Nanobit commited on
Commit
a6190c8
·
1 Parent(s): 563b6d8

Clean up landmark patching

Browse files
src/axolotl/monkeypatch/llama_landmark_attn.py CHANGED
@@ -28,15 +28,23 @@ from typing import List, Optional, Tuple, Union
28
  import torch
29
  import torch.utils.checkpoint
30
  from torch import nn
31
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
32
- from transformers.activations import ACT2FN
33
  from transformers.modeling_outputs import (
34
  BaseModelOutputWithPast,
35
  CausalLMOutputWithPast,
36
- SequenceClassifierOutputWithPast,
37
  )
38
- from transformers.modeling_utils import PreTrainedModel
39
  from transformers.models.llama.configuration_llama import LlamaConfig
 
 
 
 
 
 
 
 
 
 
 
40
  from transformers.utils import (
41
  add_start_docstrings,
42
  add_start_docstrings_to_model_forward,
@@ -51,131 +59,6 @@ _CONFIG_FOR_DOC = "LlamaConfig"
51
  MEM_TOKEN = "<landmark>" # nosec
52
 
53
 
54
- # Copied from transformers.models.bart.modeling_bart._make_causal_mask
55
- def _make_causal_mask(
56
- input_ids_shape: torch.Size,
57
- dtype: torch.dtype,
58
- device: torch.device,
59
- past_key_values_length: int = 0,
60
- ):
61
- """
62
- Make causal mask used for bi-directional self-attention.
63
- """
64
- bsz, tgt_len = input_ids_shape
65
- mask = torch.full(
66
- (tgt_len, tgt_len),
67
- torch.tensor(torch.finfo(dtype).min, device=device),
68
- device=device,
69
- )
70
- mask_cond = torch.arange(mask.size(-1), device=device)
71
- mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
72
- mask = mask.to(dtype)
73
-
74
- if past_key_values_length > 0:
75
- mask = torch.cat(
76
- [
77
- torch.zeros(
78
- tgt_len, past_key_values_length, dtype=dtype, device=device
79
- ),
80
- mask,
81
- ],
82
- dim=-1,
83
- )
84
- return mask[None, None, :, :].expand(
85
- bsz, 1, tgt_len, tgt_len + past_key_values_length
86
- )
87
-
88
-
89
- # Copied from transformers.models.bart.modeling_bart._expand_mask
90
- def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
91
- """
92
- Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
93
- """
94
- bsz, src_len = mask.size()
95
- tgt_len = tgt_len if tgt_len is not None else src_len
96
-
97
- expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
98
-
99
- inverted_mask = 1.0 - expanded_mask
100
-
101
- return inverted_mask.masked_fill(
102
- inverted_mask.to(torch.bool), torch.finfo(dtype).min
103
- )
104
-
105
-
106
- class LlamaRMSNorm(nn.Module):
107
- def __init__(self, hidden_size, eps=1e-6):
108
- """
109
- LlamaRMSNorm is equivalent to T5LayerNorm
110
- """
111
- super().__init__()
112
- self.weight = nn.Parameter(torch.ones(hidden_size))
113
- self.variance_epsilon = eps
114
-
115
- def forward(self, hidden_states):
116
- variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
117
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
118
-
119
- # convert into half-precision if necessary
120
- if self.weight.dtype in [torch.float16, torch.bfloat16]:
121
- hidden_states = hidden_states.to(self.weight.dtype)
122
-
123
- return self.weight * hidden_states
124
-
125
-
126
- class LlamaRotaryEmbedding(torch.nn.Module):
127
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
128
- super().__init__()
129
- inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
130
- self.register_buffer("inv_freq", inv_freq)
131
-
132
- # Build here to make `torch.jit.trace` work.
133
- self.max_seq_len_cached = max_position_embeddings
134
- t = torch.arange(
135
- self.max_seq_len_cached,
136
- device=self.inv_freq.device,
137
- dtype=self.inv_freq.dtype,
138
- )
139
- freqs = torch.einsum("i,j->ij", t, self.inv_freq)
140
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
141
- emb = torch.cat((freqs, freqs), dim=-1)
142
- self.register_buffer(
143
- "cos_cached", emb.cos()[None, None, :, :], persistent=False
144
- )
145
- self.register_buffer(
146
- "sin_cached", emb.sin()[None, None, :, :], persistent=False
147
- )
148
-
149
- def forward(self, x, seq_len=None):
150
- # x: [bs, num_attention_heads, seq_len, head_size]
151
- # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
152
- if seq_len > self.max_seq_len_cached:
153
- self.max_seq_len_cached = seq_len
154
- t = torch.arange(
155
- self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype
156
- )
157
- freqs = torch.einsum("i,j->ij", t, self.inv_freq)
158
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
159
- emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
160
- self.register_buffer(
161
- "cos_cached", emb.cos()[None, None, :, :], persistent=False
162
- )
163
- self.register_buffer(
164
- "sin_cached", emb.sin()[None, None, :, :], persistent=False
165
- )
166
- return (
167
- self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
168
- self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
169
- )
170
-
171
-
172
- def rotate_half(x):
173
- """Rotates half the hidden dims of the input."""
174
- x1 = x[..., : x.shape[-1] // 2]
175
- x2 = x[..., x.shape[-1] // 2 :]
176
- return torch.cat((-x2, x1), dim=-1)
177
-
178
-
179
  def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
180
  # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
181
  cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
@@ -190,24 +73,11 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
190
  return q_embed, k_embed
191
 
192
 
193
- class LlamaMLP(nn.Module):
194
- def __init__(
195
- self,
196
- hidden_size: int,
197
- intermediate_size: int,
198
- hidden_act: str,
199
- ):
200
- super().__init__()
201
- self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
202
- self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
203
- self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
204
- self.act_fn = ACT2FN[hidden_act]
205
-
206
- def forward(self, x):
207
- return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
208
-
209
-
210
  class LandmarkGroupedSoftmaxFunction(torch.autograd.Function):
 
 
 
 
211
  # Note that forward, setup_context, and backward are @staticmethods
212
  @staticmethod
213
  def forward(ctx, x, dim, mem_cnt, resp_mem_idx):
@@ -682,16 +552,14 @@ class LlamaAttention(nn.Module):
682
  # upcast attention to fp32
683
  if is_mem is None:
684
  raise ValueError("Don't use this without landmarks")
685
- # attn_weights = nn.functional.softmax(
686
- # attn_weights, dim=-1, dtype=torch.float32
687
- # ).to(query_states.dtype)
688
- else:
689
- attn_weights = landmark_grouped_softmax(
690
- attn_weights,
691
- dim=-1,
692
- is_mem=is_mem.expand(-1, self.num_heads, -1, -1),
693
- last_section_mask=last_section_mask,
694
- ).to(query_states.dtype)
695
  if attn_prefix is not None:
696
  attn_prefix, attn_weights = torch.split(
697
  attn_weights,
@@ -722,6 +590,10 @@ class LlamaAttention(nn.Module):
722
 
723
 
724
  class LlamaDecoderLayer(nn.Module):
 
 
 
 
725
  def __init__(self, config: LlamaConfig):
726
  super().__init__()
727
  self.hidden_size = config.hidden_size
@@ -802,114 +674,6 @@ class LlamaDecoderLayer(nn.Module):
802
  return outputs
803
 
804
 
805
- LLAMA_START_DOCSTRING = r"""
806
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
807
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
808
- etc.)
809
-
810
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
811
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
812
- and behavior.
813
-
814
- Parameters:
815
- config ([`LlamaConfig`]):
816
- Model configuration class with all the parameters of the model. Initializing with a config file does not
817
- load the weights associated with the model, only the configuration. Check out the
818
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
819
- """
820
-
821
-
822
- @add_start_docstrings(
823
- "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
824
- LLAMA_START_DOCSTRING,
825
- )
826
- class LlamaPreTrainedModel(PreTrainedModel):
827
- config_class = LlamaConfig
828
- base_model_prefix = "model"
829
- supports_gradient_checkpointing = True
830
- _no_split_modules = ["LlamaDecoderLayer"]
831
- _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
832
-
833
- def _init_weights(self, module):
834
- std = self.config.initializer_range
835
- if isinstance(module, nn.Linear):
836
- module.weight.data.normal_(mean=0.0, std=std)
837
- if module.bias is not None:
838
- module.bias.data.zero_()
839
- elif isinstance(module, nn.Embedding):
840
- module.weight.data.normal_(mean=0.0, std=std)
841
- if module.padding_idx is not None:
842
- module.weight.data[module.padding_idx].zero_()
843
-
844
- def _set_gradient_checkpointing(self, module, value=False):
845
- if isinstance(module, LlamaModel):
846
- module.gradient_checkpointing = value
847
-
848
-
849
- LLAMA_INPUTS_DOCSTRING = r"""
850
- Args:
851
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
852
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
853
- it.
854
-
855
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
856
- [`PreTrainedTokenizer.__call__`] for details.
857
-
858
- [What are input IDs?](../glossary#input-ids)
859
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
860
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
861
-
862
- - 1 for tokens that are **not masked**,
863
- - 0 for tokens that are **masked**.
864
-
865
- [What are attention masks?](../glossary#attention-mask)
866
-
867
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
868
- [`PreTrainedTokenizer.__call__`] for details.
869
-
870
- If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
871
- `past_key_values`).
872
-
873
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
874
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
875
- information on the default strategy.
876
-
877
- - 1 indicates the head is **not masked**,
878
- - 0 indicates the head is **masked**.
879
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
880
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
881
- config.n_positions - 1]`.
882
-
883
- [What are position IDs?](../glossary#position-ids)
884
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
885
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
886
- `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
887
- `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
888
-
889
- Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
890
- blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
891
-
892
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
893
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
894
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
895
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
896
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
897
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
898
- model's internal embedding lookup matrix.
899
- use_cache (`bool`, *optional*):
900
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
901
- `past_key_values`).
902
- output_attentions (`bool`, *optional*):
903
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
904
- tensors for more detail.
905
- output_hidden_states (`bool`, *optional*):
906
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
907
- more detail.
908
- return_dict (`bool`, *optional*):
909
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
910
- """
911
-
912
-
913
  @add_start_docstrings(
914
  "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
915
  LLAMA_START_DOCSTRING,
@@ -1178,6 +942,10 @@ class LlamaModel(LlamaPreTrainedModel):
1178
 
1179
 
1180
  class LlamaForCausalLM(LlamaPreTrainedModel):
 
 
 
 
1181
  def __init__(self, config):
1182
  super().__init__(config)
1183
  self.model = LlamaModel(config)
@@ -1448,149 +1216,15 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
1448
  return reordered_past
1449
 
1450
 
1451
- @add_start_docstrings(
1452
- """
1453
- The LLaMa Model transformer with a sequence classification head on top (linear layer).
1454
-
1455
- [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1456
- (e.g. GPT-2) do.
1457
-
1458
- Since it does classification on the last token, it requires to know the position of the last token. If a
1459
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1460
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1461
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1462
- each row of the batch).
1463
- """,
1464
- LLAMA_START_DOCSTRING,
1465
- )
1466
- class LlamaForSequenceClassification(LlamaPreTrainedModel):
1467
- _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
1468
-
1469
- def __init__(self, config):
1470
- super().__init__(config)
1471
- self.num_labels = config.num_labels
1472
- self.model = LlamaModel(config)
1473
- self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1474
-
1475
- # Initialize weights and apply final processing
1476
- self.post_init()
1477
-
1478
- def get_input_embeddings(self):
1479
- return self.model.embed_tokens
1480
-
1481
- def set_input_embeddings(self, value):
1482
- self.model.embed_tokens = value
1483
-
1484
- @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1485
- def forward(
1486
- self,
1487
- input_ids: torch.LongTensor = None,
1488
- attention_mask: Optional[torch.Tensor] = None,
1489
- position_ids: Optional[torch.LongTensor] = None,
1490
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1491
- inputs_embeds: Optional[torch.FloatTensor] = None,
1492
- labels: Optional[torch.LongTensor] = None,
1493
- use_cache: Optional[bool] = None,
1494
- output_attentions: Optional[bool] = None,
1495
- output_hidden_states: Optional[bool] = None,
1496
- return_dict: Optional[bool] = None,
1497
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1498
- r"""
1499
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1500
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1501
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1502
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1503
- """
1504
- return_dict = (
1505
- return_dict if return_dict is not None else self.config.use_return_dict
1506
- )
1507
-
1508
- transformer_outputs = self.model(
1509
- input_ids,
1510
- attention_mask=attention_mask,
1511
- position_ids=position_ids,
1512
- past_key_values=past_key_values,
1513
- inputs_embeds=inputs_embeds,
1514
- use_cache=use_cache,
1515
- output_attentions=output_attentions,
1516
- output_hidden_states=output_hidden_states,
1517
- return_dict=return_dict,
1518
- )
1519
- hidden_states = transformer_outputs[0]
1520
- logits = self.score(hidden_states)
1521
-
1522
- if input_ids is not None:
1523
- batch_size = input_ids.shape[0]
1524
- else:
1525
- batch_size = inputs_embeds.shape[0]
1526
-
1527
- if self.config.pad_token_id is None and batch_size != 1:
1528
- raise ValueError(
1529
- "Cannot handle batch sizes > 1 if no padding token is defined."
1530
- )
1531
- if self.config.pad_token_id is None:
1532
- sequence_lengths = -1
1533
- else:
1534
- if input_ids is not None:
1535
- sequence_lengths = (
1536
- torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
1537
- ).to(logits.device)
1538
- else:
1539
- sequence_lengths = -1
1540
-
1541
- pooled_logits = logits[
1542
- torch.arange(batch_size, device=logits.device), sequence_lengths
1543
- ]
1544
-
1545
- loss = None
1546
- if labels is not None:
1547
- labels = labels.to(logits.device)
1548
- if self.config.problem_type is None:
1549
- if self.num_labels == 1:
1550
- self.config.problem_type = "regression"
1551
- elif self.num_labels > 1 and (
1552
- labels.dtype == torch.long or labels.dtype == torch.int
1553
- ):
1554
- self.config.problem_type = "single_label_classification"
1555
- else:
1556
- self.config.problem_type = "multi_label_classification"
1557
-
1558
- if self.config.problem_type == "regression":
1559
- loss_fct = MSELoss()
1560
- if self.num_labels == 1:
1561
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1562
- else:
1563
- loss = loss_fct(pooled_logits, labels)
1564
- elif self.config.problem_type == "single_label_classification":
1565
- loss_fct = CrossEntropyLoss()
1566
- loss = loss_fct(
1567
- pooled_logits.view(-1, self.num_labels), labels.view(-1)
1568
- )
1569
- elif self.config.problem_type == "multi_label_classification":
1570
- loss_fct = BCEWithLogitsLoss()
1571
- loss = loss_fct(pooled_logits, labels)
1572
- if not return_dict:
1573
- output = (pooled_logits,) + transformer_outputs[1:]
1574
- return ((loss,) + output) if loss is not None else output
1575
-
1576
- return SequenceClassifierOutputWithPast(
1577
- loss=loss,
1578
- logits=pooled_logits,
1579
- past_key_values=transformer_outputs.past_key_values,
1580
- hidden_states=transformer_outputs.hidden_states,
1581
- attentions=transformer_outputs.attentions,
1582
- )
1583
-
1584
-
1585
  def add_mem_tokens(example, mem_freq, mem_id):
1586
- x = example["input_ids"]
1587
  ret = []
1588
  prev_idx = 0
1589
- for t_idx in range(mem_freq, len(x), mem_freq):
1590
- ret.extend(x[prev_idx:t_idx])
1591
  ret.append(mem_id)
1592
  prev_idx = t_idx
1593
- ret.extend(x[prev_idx:])
1594
  # drop attention_mask
1595
  return {"input_ids": ret}
1596
 
@@ -1602,3 +1236,4 @@ def patch_llama_with_landmark_attn():
1602
  transformers.models.llama.modeling_llama.LlamaModel = LlamaModel
1603
  transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention
1604
  transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer
 
 
28
  import torch
29
  import torch.utils.checkpoint
30
  from torch import nn
31
+ from torch.nn import CrossEntropyLoss
 
32
  from transformers.modeling_outputs import (
33
  BaseModelOutputWithPast,
34
  CausalLMOutputWithPast,
 
35
  )
 
36
  from transformers.models.llama.configuration_llama import LlamaConfig
37
+ from transformers.models.llama.modeling_llama import (
38
+ LLAMA_INPUTS_DOCSTRING,
39
+ LLAMA_START_DOCSTRING,
40
+ LlamaMLP,
41
+ LlamaPreTrainedModel,
42
+ LlamaRMSNorm,
43
+ LlamaRotaryEmbedding,
44
+ _expand_mask,
45
+ _make_causal_mask,
46
+ rotate_half,
47
+ )
48
  from transformers.utils import (
49
  add_start_docstrings,
50
  add_start_docstrings_to_model_forward,
 
59
  MEM_TOKEN = "<landmark>" # nosec
60
 
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
63
  # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
64
  cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
 
73
  return q_embed, k_embed
74
 
75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  class LandmarkGroupedSoftmaxFunction(torch.autograd.Function):
77
+ """
78
+ Landmark grouped softmax function.
79
+ """
80
+
81
  # Note that forward, setup_context, and backward are @staticmethods
82
  @staticmethod
83
  def forward(ctx, x, dim, mem_cnt, resp_mem_idx):
 
552
  # upcast attention to fp32
553
  if is_mem is None:
554
  raise ValueError("Don't use this without landmarks")
555
+
556
+ attn_weights = landmark_grouped_softmax(
557
+ attn_weights,
558
+ dim=-1,
559
+ is_mem=is_mem.expand(-1, self.num_heads, -1, -1),
560
+ last_section_mask=last_section_mask,
561
+ ).to(query_states.dtype)
562
+
 
 
563
  if attn_prefix is not None:
564
  attn_prefix, attn_weights = torch.split(
565
  attn_weights,
 
590
 
591
 
592
  class LlamaDecoderLayer(nn.Module):
593
+ """
594
+ Llama Decoder layer
595
+ """
596
+
597
  def __init__(self, config: LlamaConfig):
598
  super().__init__()
599
  self.hidden_size = config.hidden_size
 
674
  return outputs
675
 
676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677
  @add_start_docstrings(
678
  "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
679
  LLAMA_START_DOCSTRING,
 
942
 
943
 
944
  class LlamaForCausalLM(LlamaPreTrainedModel):
945
+ """
946
+ Llama model with a causal language modeling head.
947
+ """
948
+
949
  def __init__(self, config):
950
  super().__init__(config)
951
  self.model = LlamaModel(config)
 
1216
  return reordered_past
1217
 
1218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219
  def add_mem_tokens(example, mem_freq, mem_id):
1220
+ ids = example["input_ids"]
1221
  ret = []
1222
  prev_idx = 0
1223
+ for t_idx in range(mem_freq, len(ids), mem_freq):
1224
+ ret.extend(ids[prev_idx:t_idx])
1225
  ret.append(mem_id)
1226
  prev_idx = t_idx
1227
+ ret.extend(ids[prev_idx:])
1228
  # drop attention_mask
1229
  return {"input_ids": ret}
1230
 
 
1236
  transformers.models.llama.modeling_llama.LlamaModel = LlamaModel
1237
  transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention
1238
  transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer
1239
+ transformers.models.llama.modeling_llama.apply_rotary_pos_emb = apply_rotary_pos_emb