winglian commited on
Commit
70b46ca
·
unverified ·
1 Parent(s): 85dd4d5

remove landmark attn and xpos rope implementations (#1010)

Browse files
README.md CHANGED
@@ -798,11 +798,6 @@ flash_attn_fuse_mlp: # Whether to fuse part of the MLP into a single operation
798
  # Whether to use scaled-dot-product attention
799
  # https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
800
  sdp_attention:
801
- # Landmark attention (only llama)
802
- landmark_attention:
803
- # xpos RoPE see https://github.com/kaiokendev/cutoff-len-is-context-len/blob/main/util/xpos_rope_llama_monkey_patch.py
804
- # LLaMA only
805
- xpos_rope:
806
 
807
  # Resume from a specific checkpoint dir
808
  resume_from_checkpoint:
 
798
  # Whether to use scaled-dot-product attention
799
  # https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
800
  sdp_attention:
 
 
 
 
 
801
 
802
  # Resume from a specific checkpoint dir
803
  resume_from_checkpoint:
src/axolotl/cli/__init__.py CHANGED
@@ -103,14 +103,6 @@ def do_inference(
103
  importlib.import_module("axolotl.prompters"), prompter
104
  )
105
 
106
- if cfg.landmark_attention:
107
- from axolotl.monkeypatch.llama_landmark_attn import set_model_mem_id
108
-
109
- set_model_mem_id(model, tokenizer)
110
- model.set_mem_cache_args(
111
- max_seq_len=255, mem_freq=50, top_k=5, max_cache_size=None
112
- )
113
-
114
  model = model.to(cfg.device)
115
 
116
  while True:
@@ -176,14 +168,6 @@ def do_inference_gradio(
176
  importlib.import_module("axolotl.prompters"), prompter
177
  )
178
 
179
- if cfg.landmark_attention:
180
- from axolotl.monkeypatch.llama_landmark_attn import set_model_mem_id
181
-
182
- set_model_mem_id(model, tokenizer)
183
- model.set_mem_cache_args(
184
- max_seq_len=255, mem_freq=50, top_k=5, max_cache_size=None
185
- )
186
-
187
  model = model.to(cfg.device)
188
 
189
  def generate(instruction):
 
103
  importlib.import_module("axolotl.prompters"), prompter
104
  )
105
 
 
 
 
 
 
 
 
 
106
  model = model.to(cfg.device)
107
 
108
  while True:
 
168
  importlib.import_module("axolotl.prompters"), prompter
169
  )
170
 
 
 
 
 
 
 
 
 
171
  model = model.to(cfg.device)
172
 
173
  def generate(instruction):
src/axolotl/core/trainer_builder.py CHANGED
@@ -9,7 +9,7 @@ import math
9
  import sys
10
  from abc import abstractmethod
11
  from dataclasses import dataclass, field
12
- from functools import partial, wraps
13
  from pathlib import Path
14
  from typing import Optional
15
 
@@ -780,26 +780,6 @@ class HFCausalTrainerBuilder(TrainerBuilderBase):
780
  # https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
781
  data_collator_kwargs["pad_to_multiple_of"] = 64
782
 
783
- if self.cfg.is_llama_derived_model and self.cfg.landmark_attention:
784
- from axolotl.monkeypatch.llama_landmark_attn import (
785
- add_mem_tokens,
786
- get_mem_id,
787
- set_model_mem_id,
788
- )
789
-
790
- set_model_mem_id(self.model, self.tokenizer)
791
-
792
- LOG.info("Adding landmark attention tokens to dataset")
793
-
794
- for dataset in [self.train_dataset, self.eval_dataset]:
795
- dataset = dataset.map(
796
- partial(
797
- add_mem_tokens, mem_freq=50, mem_id=get_mem_id(self.tokenizer)
798
- ),
799
- batched=False,
800
- num_proc=32,
801
- )
802
-
803
  trainer_cls = self._get_trainer_cls()
804
  trainer_kwargs, trainer_cls = self.hook_pre_create_trainer(
805
  trainer_kwargs, trainer_cls
 
9
  import sys
10
  from abc import abstractmethod
11
  from dataclasses import dataclass, field
12
+ from functools import wraps
13
  from pathlib import Path
14
  from typing import Optional
15
 
 
780
  # https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
781
  data_collator_kwargs["pad_to_multiple_of"] = 64
782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783
  trainer_cls = self._get_trainer_cls()
784
  trainer_kwargs, trainer_cls = self.hook_pre_create_trainer(
785
  trainer_kwargs, trainer_cls
src/axolotl/monkeypatch/llama_landmark_attn.py DELETED
@@ -1,1249 +0,0 @@
1
- # pylint: skip-file
2
- # coding=utf-8
3
- # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
4
- #
5
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
- # and OPT implementations in this library. It has been modified from its
7
- # original forms to accommodate minor architectural differences compared
8
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
- #
10
- # Licensed under the Apache License, Version 2.0 (the "License");
11
- # you may not use this file except in compliance with the License.
12
- # You may obtain a copy of the License at
13
- #
14
- # http://www.apache.org/licenses/LICENSE-2.0
15
- #
16
- # Unless required by applicable law or agreed to in writing, software
17
- # distributed under the License is distributed on an "AS IS" BASIS,
18
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
- # See the License for the specific language governing permissions and
20
- # limitations under the License.
21
- """
22
- PyTorch LLaMA model.
23
- Taken from https://github.com/epfml/landmark-attention/blob/main/llama/llama_mem.py and modified.
24
- """
25
- import math
26
- from typing import List, Optional, Tuple, Union
27
-
28
- import torch
29
- import torch.utils.checkpoint
30
- from torch import nn
31
- from torch.nn import CrossEntropyLoss
32
- from transformers import LlamaTokenizer
33
- from transformers.modeling_outputs import (
34
- BaseModelOutputWithPast,
35
- CausalLMOutputWithPast,
36
- )
37
- from transformers.models.llama.configuration_llama import LlamaConfig
38
- from transformers.models.llama.modeling_llama import (
39
- LLAMA_INPUTS_DOCSTRING,
40
- LLAMA_START_DOCSTRING,
41
- LlamaMLP,
42
- LlamaPreTrainedModel,
43
- LlamaRMSNorm,
44
- LlamaRotaryEmbedding,
45
- _expand_mask,
46
- _make_causal_mask,
47
- rotate_half,
48
- )
49
- from transformers.utils import (
50
- add_start_docstrings,
51
- add_start_docstrings_to_model_forward,
52
- logging,
53
- replace_return_docstrings,
54
- )
55
-
56
- LOG = logging.getLogger("axolotl")
57
-
58
- _CONFIG_FOR_DOC = "LlamaConfig"
59
-
60
- MEM_TOKEN = "<landmark>" # nosec
61
-
62
-
63
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
64
- # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
65
- cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
66
- sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
67
- cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
68
- sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
69
- if q is None:
70
- q_embed = None
71
- else:
72
- q_embed = (q * cos) + (rotate_half(q) * sin)
73
- k_embed = (k * cos) + (rotate_half(k) * sin)
74
- return q_embed, k_embed
75
-
76
-
77
- class LandmarkGroupedSoftmaxFunction(torch.autograd.Function):
78
- """
79
- Landmark grouped softmax function.
80
- """
81
-
82
- # Note that forward, setup_context, and backward are @staticmethods
83
- @staticmethod
84
- def forward(ctx, x, dim, mem_cnt, resp_mem_idx):
85
- new_shape = list(x.shape)
86
- new_shape[dim] = mem_cnt # max_mem_cnt.item()
87
- max_by_group = x.new_zeros((*new_shape,))
88
- max_by_group.scatter_reduce_(
89
- src=x, index=resp_mem_idx, dim=dim, reduce="amax", include_self=False
90
- )
91
-
92
- maxes = torch.gather(max_by_group, dim, resp_mem_idx)
93
- # x_exp = torch.exp(x - torch.where(torch.isinf(maxes), 0, maxes))
94
- x_exp = torch.exp((x - maxes).to(torch.float32))
95
-
96
- cumsum_by_group = torch.zeros_like(max_by_group, dtype=x_exp.dtype)
97
-
98
- cumsum_by_group.scatter_add_(
99
- dim,
100
- resp_mem_idx,
101
- x_exp,
102
- )
103
- denom = torch.gather(cumsum_by_group, dim, resp_mem_idx)
104
-
105
- # probs = torch.where(denom < 0.5, 0, x_exp / denom)
106
- probs = x_exp / denom
107
-
108
- ctx.mem_cnt = mem_cnt
109
- ctx.dim = dim
110
- ctx.save_for_backward(resp_mem_idx, probs)
111
-
112
- return probs
113
-
114
- @staticmethod
115
- def backward(ctx, grad_probs):
116
- mem_cnt = ctx.mem_cnt
117
- dim = ctx.dim
118
- resp_mem_idx, probs = ctx.saved_tensors
119
- grad_x = grad_dim = grad_mem_cnt = grad_resp_mem_idx = None
120
-
121
- if ctx.needs_input_grad[0] or ctx.needs_input_grad[4]:
122
- grad_pair = grad_probs * probs
123
-
124
- new_shape = list(probs.shape)
125
- new_shape[dim] = mem_cnt # max_mem_cnt.item()
126
- cumsum_by_group = grad_pair.new_zeros((*new_shape,))
127
- cumsum_by_group.scatter_add_(dim, resp_mem_idx, grad_pair)
128
-
129
- if ctx.needs_input_grad[0]:
130
- grad_sum = torch.gather(cumsum_by_group, dim, resp_mem_idx)
131
- grad_x = grad_pair - probs * grad_sum
132
- assert not ctx.needs_input_grad[1]
133
- assert not ctx.needs_input_grad[2]
134
- assert not ctx.needs_input_grad[3]
135
-
136
- return grad_x, grad_dim, grad_mem_cnt, grad_resp_mem_idx
137
-
138
-
139
- def landmark_grouped_softmax(x, dim, is_mem, last_section_mask):
140
- last_and_rest_mask = last_section_mask # | mask
141
-
142
- full_access_mask = is_mem | last_and_rest_mask
143
-
144
- max_mem_cnt = 16
145
- mem_group_idx = torch.cumsum(is_mem, dim=dim)
146
- mem_bucket_id = max_mem_cnt - 1
147
- resp_mem_idx = torch.where(
148
- last_and_rest_mask,
149
- max_mem_cnt - 1,
150
- torch.where(is_mem, mem_bucket_id, mem_group_idx),
151
- )
152
- probs = LandmarkGroupedSoftmaxFunction.apply(x, dim, max_mem_cnt, resp_mem_idx)
153
-
154
- new_shape = list(x.shape)
155
- new_shape[dim] = max_mem_cnt
156
- group_prob = probs.new_zeros((*new_shape,))
157
- group_prob.scatter_(
158
- dim, torch.where(is_mem, mem_group_idx - 1, max_mem_cnt - 1), probs
159
- )
160
- probs = probs.mul(
161
- torch.where(
162
- full_access_mask,
163
- last_section_mask,
164
- torch.gather(group_prob, dim, resp_mem_idx),
165
- )
166
- )
167
-
168
- return probs
169
-
170
-
171
- class LlamaAttention(nn.Module):
172
- """Multi-headed attention from 'Attention Is All You Need' paper"""
173
-
174
- def __init__(self, config: LlamaConfig):
175
- super().__init__()
176
- self.config = config
177
- self.hidden_size = config.hidden_size
178
- self.num_heads = config.num_attention_heads
179
- self.head_dim = self.hidden_size // self.num_heads
180
- self.max_position_embeddings = config.max_position_embeddings
181
-
182
- if (self.head_dim * self.num_heads) != self.hidden_size:
183
- raise ValueError(
184
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
185
- f" and `num_heads`: {self.num_heads})."
186
- )
187
- self.q_proj = nn.Linear(
188
- self.hidden_size, self.num_heads * self.head_dim, bias=False
189
- )
190
- self.k_proj = nn.Linear(
191
- self.hidden_size, self.num_heads * self.head_dim, bias=False
192
- )
193
- self.v_proj = nn.Linear(
194
- self.hidden_size, self.num_heads * self.head_dim, bias=False
195
- )
196
- self.o_proj = nn.Linear(
197
- self.num_heads * self.head_dim, self.hidden_size, bias=False
198
- )
199
- self.rotary_emb = LlamaRotaryEmbedding(
200
- self.head_dim, max_position_embeddings=self.max_position_embeddings
201
- )
202
-
203
- self.mem_freq = None
204
- self.top_k = None
205
- self.max_cache_size = None
206
-
207
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
208
- return (
209
- tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
210
- .transpose(1, 2)
211
- .contiguous()
212
- )
213
-
214
- def set_mem_cache_args(self, mem_freq, top_k, max_cache_size):
215
- self.mem_freq = mem_freq
216
- self.top_k = top_k
217
- self.max_cache_size = max_cache_size
218
-
219
- def forward(
220
- self,
221
- hidden_states: torch.Tensor,
222
- attention_mask: Optional[torch.Tensor] = None,
223
- position_ids: Optional[torch.LongTensor] = None,
224
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
225
- output_attentions: bool = False,
226
- use_cache: bool = False,
227
- is_mem: Optional[torch.Tensor] = None,
228
- last_section_mask: Optional[torch.Tensor] = None,
229
- offload_cache_to_cpu: bool = False,
230
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
231
- bsz, q_len, _ = hidden_states.size()
232
-
233
- query_states = (
234
- self.q_proj(hidden_states)
235
- .view(bsz, q_len, self.num_heads, self.head_dim)
236
- .transpose(1, 2)
237
- )
238
- key_states = (
239
- self.k_proj(hidden_states)
240
- .view(bsz, q_len, self.num_heads, self.head_dim)
241
- .transpose(1, 2)
242
- )
243
- value_states = (
244
- self.v_proj(hidden_states)
245
- .view(bsz, q_len, self.num_heads, self.head_dim)
246
- .transpose(1, 2)
247
- )
248
-
249
- kv_seq_len = key_states.shape[-2]
250
- if past_key_value is not None:
251
- kv_seq_len += past_key_value[0].shape[-2]
252
- if len(past_key_value) > 2:
253
- kv_seq_len += past_key_value[3].shape[2] * past_key_value[3].shape[3]
254
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
255
- key_states_before_pos = key_states
256
- query_states, key_states = apply_rotary_pos_emb(
257
- query_states, key_states, cos, sin, position_ids
258
- )
259
- # [bsz, nh, t, hd]
260
-
261
- attn_prefix = None
262
- if past_key_value is not None:
263
- # reuse k, v, self_attention
264
- if self.mem_freq is None:
265
- cache_len = past_key_value[0].shape[2]
266
- if self.max_cache_size is not None:
267
- cache_len = min(cache_len, self.max_cache_size)
268
- if is_mem is not None:
269
- is_mem = torch.cat(
270
- (is_mem.new_zeros((1, 1, q_len, cache_len)), is_mem), dim=-1
271
- )
272
- last_section_mask = torch.cat(
273
- (
274
- last_section_mask.new_ones((1, 1, q_len, cache_len)),
275
- last_section_mask,
276
- ),
277
- dim=-1,
278
- )
279
-
280
- past_key_states = torch.cat([past_key_value[0], key_states], dim=2)
281
- past_value_states = torch.cat([past_key_value[1], value_states], dim=2)
282
- key_states = past_key_states[:, :, -(q_len + cache_len) :]
283
- value_states = past_value_states[:, :, -(q_len + cache_len) :]
284
- expected_att_size = (bsz, self.num_heads, q_len, cache_len + q_len)
285
- else:
286
- orig_value_states = value_states
287
-
288
- incomplete_len = past_key_value[0].shape[2] % (self.mem_freq + 1)
289
- full_len = past_key_value[0].shape[2] - incomplete_len
290
- past_key_mem, past_key_incomplete = torch.split(
291
- past_key_value[0], (full_len, incomplete_len), dim=2
292
- )
293
- past_value_mem, past_value_incomplete = torch.split(
294
- past_key_value[1], (full_len, incomplete_len), dim=2
295
- )
296
-
297
- if offload_cache_to_cpu:
298
- past_key_value = (
299
- past_key_incomplete,
300
- past_value_incomplete,
301
- *past_key_value[2:],
302
- )
303
-
304
- if incomplete_len > 0:
305
- assert q_len + incomplete_len <= (self.mem_freq + 1)
306
- is_mem = torch.cat(
307
- (is_mem.new_zeros((1, 1, q_len, incomplete_len)), is_mem), dim=-1
308
- )
309
- last_section_mask = torch.cat(
310
- (
311
- last_section_mask.new_ones((1, 1, q_len, incomplete_len)),
312
- last_section_mask,
313
- ),
314
- dim=-1,
315
- )
316
-
317
- if len(past_key_value) > 2:
318
- full_len += past_key_value[3].shape[2] * past_key_value[3].shape[3]
319
- past_key_incomplete_pos = torch.arange(
320
- full_len,
321
- full_len + incomplete_len,
322
- dtype=torch.long,
323
- device=position_ids.device,
324
- ).unsqueeze(0)
325
- _, past_key_incomplete = apply_rotary_pos_emb(
326
- None, past_key_incomplete, cos, sin, past_key_incomplete_pos
327
- )
328
- key_states = torch.cat((past_key_incomplete, key_states), dim=2)
329
- value_states = torch.cat((past_value_incomplete, value_states), dim=2)
330
-
331
- past_key_mem = past_key_mem.view(
332
- bsz, self.num_heads, -1, self.mem_freq + 1, self.head_dim
333
- )
334
- past_value_mem = past_value_mem.view(
335
- bsz, self.num_heads, -1, self.mem_freq + 1, self.head_dim
336
- )
337
-
338
- if len(past_key_value) > 2:
339
- mem_key_nopos = torch.cat(
340
- (
341
- past_key_value[2],
342
- past_key_mem.select(dim=3, index=self.mem_freq),
343
- ),
344
- dim=2,
345
- )
346
- past_key_mem_offload = past_key_value[3]
347
- past_key_mem = torch.cat(
348
- (
349
- past_key_mem_offload,
350
- past_key_mem.to(past_key_mem_offload.device),
351
- ),
352
- dim=2,
353
- )
354
- past_value_mem = torch.cat(
355
- (
356
- past_key_value[4],
357
- past_value_mem.to(past_key_mem_offload.device),
358
- ),
359
- dim=2,
360
- )
361
- else:
362
- mem_key_nopos = past_key_mem.select(dim=3, index=self.mem_freq)
363
-
364
- num_mems = past_key_mem.shape[2]
365
- top_k = min(self.top_k, num_mems)
366
- prefix_len = full_len - (top_k + 1) * (self.mem_freq + 1)
367
- mem_indices = torch.cat(
368
- (
369
- position_ids.new_zeros((max(0, num_mems - top_k),)),
370
- torch.arange(
371
- 1,
372
- top_k + 1,
373
- device=query_states.device,
374
- dtype=position_ids.dtype,
375
- ),
376
- ),
377
- dim=0,
378
- )
379
- mem_pos = (mem_indices * (self.mem_freq + 1) + self.mem_freq).unsqueeze(
380
- 0
381
- ).expand(bsz, -1) + prefix_len
382
- _, mem_key = apply_rotary_pos_emb(
383
- None, mem_key_nopos, cos, sin, mem_pos
384
- )
385
- mem_attn_weights = torch.matmul(
386
- query_states, mem_key.transpose(2, 3)
387
- ) / math.sqrt(self.head_dim)
388
-
389
- if offload_cache_to_cpu:
390
- aggregate = "max_over_tokens"
391
- else:
392
- aggregate = None
393
- if aggregate == "max_over_tokens":
394
- token_retrievers = 1
395
- head_retrievers = self.num_heads
396
- mem_attn_weights = torch.nn.functional.softmax(
397
- mem_attn_weights, dim=-1
398
- )
399
- mem_attn_weights = mem_attn_weights.amax(dim=2, keepdim=True)
400
- elif aggregate is None:
401
- token_retrievers = q_len
402
- head_retrievers = self.num_heads
403
- else:
404
- raise NotImplementedError()
405
-
406
- mem_selected_idx = (
407
- mem_attn_weights.topk(dim=-1, k=top_k)[1]
408
- .sort(dim=-1)[0]
409
- .view(bsz, head_retrievers, token_retrievers, top_k)
410
- )
411
-
412
- selected_indices = torch.arange(
413
- 0,
414
- top_k * (self.mem_freq + 1),
415
- device=query_states.device,
416
- dtype=position_ids.dtype,
417
- )
418
- selected_indices = torch.where(
419
- mem_selected_idx >= num_mems - top_k, self.mem_freq + 1, 0
420
- ).unsqueeze(-1) + selected_indices.view(
421
- 1, 1, 1, top_k, self.mem_freq + 1
422
- )
423
- selected_indices = (
424
- selected_indices.view(
425
- bsz, head_retrievers, token_retrievers, -1
426
- ).expand(bsz, self.num_heads, q_len, -1)
427
- + prefix_len
428
- )
429
-
430
- mem_selected_idx = mem_selected_idx.to(past_key_mem.device)
431
-
432
- mem_selected_idx = mem_selected_idx.view(
433
- bsz, self.num_heads, token_retrievers, top_k, 1, 1
434
- ).expand(
435
- bsz,
436
- self.num_heads,
437
- token_retrievers,
438
- top_k,
439
- self.mem_freq + 1,
440
- self.head_dim,
441
- )
442
- selected_keys = past_key_mem.unsqueeze(2).expand(
443
- bsz,
444
- self.num_heads,
445
- token_retrievers,
446
- -1,
447
- self.mem_freq + 1,
448
- self.head_dim,
449
- )
450
- selected_keys = selected_keys.take_along_dim(
451
- mem_selected_idx, dim=3
452
- ).to(query_states.device)
453
- selected_values = (
454
- past_value_mem.unsqueeze(2)
455
- .expand(
456
- bsz,
457
- self.num_heads,
458
- token_retrievers,
459
- -1,
460
- self.mem_freq + 1,
461
- self.head_dim,
462
- )
463
- .take_along_dim(mem_selected_idx, dim=3)
464
- .to(query_states.device)
465
- )
466
-
467
- selected_keys = selected_keys.view(
468
- bsz, self.num_heads, token_retrievers, -1, self.head_dim
469
- ).expand(bsz, self.num_heads, q_len, -1, self.head_dim)
470
- selected_keys = apply_rotary_pos_emb(
471
- None, selected_keys.unsqueeze(1), cos, sin, selected_indices
472
- )[1].squeeze(1)
473
- selected_values = selected_values.view(
474
- bsz, self.num_heads, token_retrievers, -1, self.head_dim
475
- ).expand(bsz, self.num_heads, q_len, -1, self.head_dim)
476
- attn_prefix = torch.matmul(
477
- query_states.unsqueeze(3), selected_keys.transpose(3, 4)
478
- ).squeeze(3) / math.sqrt(self.head_dim)
479
- is_mem_prefix = (
480
- torch.cat(
481
- (is_mem.new_zeros((self.mem_freq,)), is_mem.new_ones((1,)))
482
- )
483
- .unsqueeze(0)
484
- .repeat((top_k, 1))
485
- )
486
- is_mem_prefix = is_mem_prefix.view(1, 1, 1, -1).expand(1, 1, q_len, -1)
487
- is_mem = torch.cat((is_mem_prefix, is_mem), dim=-1)
488
- last_section_mask = torch.cat(
489
- (
490
- last_section_mask.new_zeros(
491
- (1, 1, q_len, top_k * (self.mem_freq + 1))
492
- ),
493
- last_section_mask,
494
- ),
495
- dim=-1,
496
- )
497
- expected_att_size = (bsz, self.num_heads, q_len, q_len + incomplete_len)
498
-
499
- past_key_states = torch.cat(
500
- [past_key_value[0], key_states_before_pos], dim=2
501
- )
502
- past_value_states = torch.cat(
503
- [past_key_value[1], orig_value_states], dim=2
504
- )
505
-
506
- if offload_cache_to_cpu:
507
- past_key_value = (
508
- (
509
- past_key_states,
510
- past_value_states,
511
- mem_key_nopos,
512
- past_key_mem.to("cpu"),
513
- past_value_mem.to("cpu"),
514
- *past_key_value[5:],
515
- )
516
- if use_cache
517
- else None
518
- )
519
- else:
520
- past_key_value = (
521
- (past_key_states, past_value_states) if use_cache else None
522
- )
523
-
524
- else:
525
- if self.mem_freq is None:
526
- past_key_states = key_states
527
- else:
528
- past_key_states = key_states_before_pos
529
- past_value_states = value_states
530
- expected_att_size = (bsz, self.num_heads, q_len, kv_seq_len)
531
- past_key_value = (past_key_states, past_value_states) if use_cache else None
532
-
533
- attn_weights = torch.matmul(
534
- query_states, key_states.transpose(2, 3)
535
- ) / math.sqrt(self.head_dim)
536
- if attn_weights.size() != expected_att_size:
537
- raise ValueError(
538
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
539
- f" {attn_weights.size()}"
540
- )
541
-
542
- if attention_mask is not None:
543
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
544
- raise ValueError(
545
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
546
- )
547
- attn_weights = attn_weights + attention_mask[..., -attn_weights.shape[-1] :]
548
- attn_weights = torch.max(
549
- attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
550
- )
551
- if attn_prefix is not None:
552
- attn_weights = torch.cat((attn_prefix, attn_weights), dim=-1)
553
- # upcast attention to fp32
554
- if is_mem is None:
555
- raise ValueError("Don't use this without landmarks")
556
-
557
- attn_weights = landmark_grouped_softmax(
558
- attn_weights,
559
- dim=-1,
560
- is_mem=is_mem.expand(-1, self.num_heads, -1, -1),
561
- last_section_mask=last_section_mask,
562
- ).to(query_states.dtype)
563
-
564
- if attn_prefix is not None:
565
- attn_prefix, attn_weights = torch.split(
566
- attn_weights,
567
- (attn_prefix.shape[-1], attn_weights.shape[-1] - attn_prefix.shape[-1]),
568
- dim=-1,
569
- )
570
- attn_output = torch.matmul(attn_weights, value_states)
571
- if attn_prefix is not None:
572
- attn_output += torch.matmul(
573
- attn_prefix.unsqueeze(3), selected_values
574
- ).squeeze(3)
575
-
576
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
577
- raise ValueError(
578
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
579
- f" {attn_output.size()}"
580
- )
581
-
582
- attn_output = attn_output.transpose(1, 2)
583
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
584
-
585
- attn_output = self.o_proj(attn_output)
586
-
587
- if not output_attentions:
588
- attn_weights = None
589
-
590
- return attn_output, attn_weights, past_key_value
591
-
592
-
593
- class LlamaDecoderLayer(nn.Module):
594
- """
595
- Llama Decoder layer
596
- """
597
-
598
- def __init__(self, config: LlamaConfig):
599
- super().__init__()
600
- self.hidden_size = config.hidden_size
601
- self.self_attn = LlamaAttention(config=config)
602
- self.mlp = LlamaMLP(
603
- hidden_size=self.hidden_size,
604
- intermediate_size=config.intermediate_size,
605
- hidden_act=config.hidden_act,
606
- )
607
- self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
608
- self.post_attention_layernorm = LlamaRMSNorm(
609
- config.hidden_size, eps=config.rms_norm_eps
610
- )
611
-
612
- def set_mem_cache_args(self, mem_freq, top_k, max_cache_size):
613
- self.self_attn.set_mem_cache_args(mem_freq, top_k, max_cache_size)
614
-
615
- def forward(
616
- self,
617
- hidden_states: torch.Tensor,
618
- attention_mask: Optional[torch.Tensor] = None,
619
- position_ids: Optional[torch.LongTensor] = None,
620
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
621
- output_attentions: Optional[bool] = False,
622
- use_cache: Optional[bool] = False,
623
- is_mem: Optional[torch.Tensor] = None,
624
- last_section_mask: Optional[torch.Tensor] = None,
625
- offload_cache_to_cpu: bool = False,
626
- ) -> Tuple[
627
- torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
628
- ]:
629
- """
630
- Args:
631
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
632
- attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
633
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
634
- output_attentions (`bool`, *optional*):
635
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
636
- returned tensors for more detail.
637
- use_cache (`bool`, *optional*):
638
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
639
- (see `past_key_values`).
640
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
641
- """
642
-
643
- residual = hidden_states
644
-
645
- hidden_states = self.input_layernorm(hidden_states)
646
-
647
- # Self Attention
648
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
649
- hidden_states=hidden_states,
650
- attention_mask=attention_mask,
651
- position_ids=position_ids,
652
- past_key_value=past_key_value,
653
- output_attentions=output_attentions,
654
- use_cache=use_cache,
655
- is_mem=is_mem,
656
- last_section_mask=last_section_mask,
657
- offload_cache_to_cpu=offload_cache_to_cpu,
658
- )
659
- hidden_states = residual + hidden_states
660
-
661
- # Fully Connected
662
- residual = hidden_states
663
- hidden_states = self.post_attention_layernorm(hidden_states)
664
- hidden_states = self.mlp(hidden_states)
665
- hidden_states = residual + hidden_states
666
-
667
- outputs = (hidden_states,)
668
-
669
- if output_attentions:
670
- outputs += (self_attn_weights,)
671
-
672
- if use_cache:
673
- outputs += (present_key_value,)
674
-
675
- return outputs
676
-
677
-
678
- @add_start_docstrings(
679
- "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
680
- LLAMA_START_DOCSTRING,
681
- )
682
- class LlamaModel(LlamaPreTrainedModel):
683
- """
684
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
685
-
686
- Args:
687
- config: LlamaConfig
688
- """
689
-
690
- def __init__(self, config: LlamaConfig):
691
- super().__init__(config)
692
- self.padding_idx = config.pad_token_id
693
- self.vocab_size = config.vocab_size
694
-
695
- self.embed_tokens = nn.Embedding(
696
- config.vocab_size, config.hidden_size, self.padding_idx
697
- )
698
- self.layers = nn.ModuleList(
699
- [LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]
700
- )
701
- self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
702
-
703
- self.mem_id = None
704
-
705
- self.gradient_checkpointing = False
706
- # Initialize weights and apply final processing
707
- self.post_init()
708
-
709
- def get_input_embeddings(self):
710
- return self.embed_tokens
711
-
712
- def set_input_embeddings(self, value):
713
- self.embed_tokens = value
714
-
715
- def set_mem_id(self, mem_id):
716
- self.mem_id = mem_id
717
-
718
- def set_mem_cache_args(self, mem_freq, top_k, max_cache_size):
719
- for layer in self.layers:
720
- layer.set_mem_cache_args(mem_freq, top_k, max_cache_size)
721
-
722
- # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
723
- def _prepare_decoder_attention_mask(
724
- self, attention_mask, input_shape, inputs_embeds, past_key_values_length
725
- ):
726
- # create causal mask
727
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
728
- combined_attention_mask = None
729
- if input_shape[-1] > 1:
730
- combined_attention_mask = _make_causal_mask(
731
- input_shape,
732
- inputs_embeds.dtype,
733
- device=inputs_embeds.device,
734
- past_key_values_length=past_key_values_length,
735
- )
736
-
737
- if attention_mask is not None:
738
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
739
- expanded_attn_mask = _expand_mask(
740
- attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
741
- ).to(inputs_embeds.device)
742
- combined_attention_mask = (
743
- expanded_attn_mask
744
- if combined_attention_mask is None
745
- else expanded_attn_mask + combined_attention_mask
746
- )
747
-
748
- return combined_attention_mask
749
-
750
- @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
751
- def forward(
752
- self,
753
- input_ids: torch.LongTensor = None,
754
- attention_mask: Optional[torch.Tensor] = None,
755
- position_ids: Optional[torch.LongTensor] = None,
756
- past_key_values: Optional[List[torch.FloatTensor]] = None,
757
- inputs_embeds: Optional[torch.FloatTensor] = None,
758
- use_cache: Optional[bool] = None,
759
- output_attentions: Optional[bool] = None,
760
- output_hidden_states: Optional[bool] = None,
761
- return_dict: Optional[bool] = None,
762
- offload_cache_to_cpu: Optional[bool] = None,
763
- ) -> Union[Tuple, BaseModelOutputWithPast]:
764
- output_attentions = (
765
- output_attentions
766
- if output_attentions is not None
767
- else self.config.output_attentions
768
- )
769
- output_hidden_states = (
770
- output_hidden_states
771
- if output_hidden_states is not None
772
- else self.config.output_hidden_states
773
- )
774
- use_cache = use_cache if use_cache is not None else self.config.use_cache
775
-
776
- return_dict = (
777
- return_dict if return_dict is not None else self.config.use_return_dict
778
- )
779
-
780
- # retrieve input_ids and inputs_embeds
781
- is_mem = None
782
- if input_ids is not None and inputs_embeds is not None:
783
- raise ValueError(
784
- "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
785
- )
786
- elif input_ids is not None:
787
- batch_size, seq_length = input_ids.shape
788
- if self.mem_id is not None:
789
- with torch.no_grad():
790
- is_mem = input_ids == self.mem_id
791
- elif inputs_embeds is not None:
792
- batch_size, seq_length, _ = inputs_embeds.shape
793
- if self.mem_id is not None:
794
- raise NotImplementedError
795
- else:
796
- raise ValueError(
797
- "You have to specify either decoder_input_ids or decoder_inputs_embeds"
798
- )
799
-
800
- seq_length_with_past = seq_length
801
- past_key_values_length = 0
802
-
803
- if past_key_values is not None:
804
- if is_mem is not None:
805
- pass
806
- # raise NotImplementedError
807
- past_key_values_length = past_key_values[0][0].shape[2]
808
- if len(past_key_values[0]) > 2:
809
- past_key_values_length += (
810
- past_key_values[0][3].shape[2] * past_key_values[0][3].shape[3]
811
- )
812
- seq_length_with_past = seq_length_with_past + past_key_values_length
813
-
814
- if position_ids is None:
815
- device = input_ids.device if input_ids is not None else inputs_embeds.device
816
- position_ids = torch.arange(
817
- past_key_values_length,
818
- seq_length + past_key_values_length,
819
- dtype=torch.long,
820
- device=device,
821
- )
822
- position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
823
- else:
824
- position_ids = position_ids.view(-1, seq_length).long()
825
-
826
- if inputs_embeds is None:
827
- inputs_embeds = self.embed_tokens(input_ids)
828
- # embed positions
829
- if attention_mask is None:
830
- attention_mask = torch.ones(
831
- (batch_size, seq_length_with_past),
832
- dtype=torch.bool,
833
- device=inputs_embeds.device,
834
- )
835
- attention_mask = self._prepare_decoder_attention_mask(
836
- attention_mask,
837
- (batch_size, seq_length),
838
- inputs_embeds,
839
- past_key_values_length,
840
- )
841
-
842
- last_section_mask = None
843
- if is_mem is not None:
844
- is_mem = is_mem.unsqueeze(1).unsqueeze(2)
845
- current_len = input_ids.shape[1]
846
- mem_ids = torch.where(
847
- attention_mask[..., -current_len:] < -1,
848
- 0,
849
- torch.cumsum(is_mem, -1) - is_mem.int(),
850
- )
851
- last_section_mask = torch.amax(mem_ids, -1, keepdim=True) == mem_ids
852
- attention_mask[..., -current_len:].masked_fill_(
853
- last_section_mask & is_mem,
854
- torch.tensor(
855
- torch.finfo(inputs_embeds.dtype).min, device=inputs_embeds.device
856
- ),
857
- )
858
- last_section_mask.logical_and_(attention_mask[..., -current_len:] > -1)
859
- is_mem = is_mem.logical_and(attention_mask[..., -current_len:] > -1)
860
-
861
- hidden_states = inputs_embeds
862
-
863
- if self.gradient_checkpointing and self.training:
864
- if use_cache:
865
- LOG.warning_once(
866
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
867
- )
868
- use_cache = False
869
-
870
- # decoder layers
871
- all_hidden_states = () if output_hidden_states else None
872
- all_self_attns = () if output_attentions else None
873
- next_decoder_cache = () if use_cache else None
874
-
875
- for idx, decoder_layer in enumerate(self.layers):
876
- if output_hidden_states:
877
- all_hidden_states += (hidden_states,)
878
-
879
- past_key_value = (
880
- past_key_values[idx] if past_key_values is not None else None
881
- )
882
-
883
- if self.gradient_checkpointing and self.training:
884
-
885
- def create_custom_forward(module):
886
- def custom_forward(*inputs):
887
- # None for past_key_value
888
- return module(*inputs)
889
-
890
- return custom_forward
891
-
892
- layer_outputs = torch.utils.checkpoint.checkpoint(
893
- create_custom_forward(decoder_layer),
894
- hidden_states,
895
- attention_mask,
896
- position_ids,
897
- None,
898
- output_attentions,
899
- None,
900
- is_mem,
901
- last_section_mask,
902
- )
903
- else:
904
- layer_outputs = decoder_layer(
905
- hidden_states,
906
- attention_mask=attention_mask,
907
- position_ids=position_ids,
908
- past_key_value=past_key_value,
909
- output_attentions=output_attentions,
910
- use_cache=use_cache,
911
- is_mem=is_mem,
912
- last_section_mask=last_section_mask,
913
- offload_cache_to_cpu=offload_cache_to_cpu,
914
- )
915
-
916
- hidden_states = layer_outputs[0]
917
-
918
- if use_cache:
919
- next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
920
-
921
- if output_attentions:
922
- all_self_attns += (layer_outputs[1],)
923
-
924
- hidden_states = self.norm(hidden_states)
925
-
926
- # add hidden states from the last decoder layer
927
- if output_hidden_states:
928
- all_hidden_states += (hidden_states,)
929
-
930
- next_cache = next_decoder_cache if use_cache else None
931
- if not return_dict:
932
- return tuple(
933
- v
934
- for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
935
- if v is not None
936
- )
937
- return BaseModelOutputWithPast(
938
- last_hidden_state=hidden_states,
939
- past_key_values=next_cache,
940
- hidden_states=all_hidden_states,
941
- attentions=all_self_attns,
942
- )
943
-
944
-
945
- class LlamaForCausalLM(LlamaPreTrainedModel):
946
- """
947
- Llama model with a causal language modeling head.
948
- """
949
-
950
- def __init__(self, config):
951
- super().__init__(config)
952
- self.model = LlamaModel(config)
953
-
954
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
955
-
956
- self.mem_id = None
957
- self.mem_freq = None
958
- self.top_k = None
959
- self.max_seq_len = None
960
-
961
- # Initialize weights and apply final processing
962
- self.post_init()
963
-
964
- def get_input_embeddings(self):
965
- return self.model.embed_tokens
966
-
967
- def set_input_embeddings(self, value):
968
- self.model.embed_tokens = value
969
-
970
- def get_output_embeddings(self):
971
- return self.lm_head
972
-
973
- def set_output_embeddings(self, new_embeddings):
974
- self.lm_head = new_embeddings
975
-
976
- def set_decoder(self, decoder):
977
- self.model = decoder
978
-
979
- def get_decoder(self):
980
- return self.model
981
-
982
- @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
983
- @replace_return_docstrings(
984
- output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
985
- )
986
- def forward(
987
- self,
988
- input_ids: torch.LongTensor = None,
989
- attention_mask: Optional[torch.Tensor] = None,
990
- position_ids: Optional[torch.LongTensor] = None,
991
- past_key_values: Optional[List[torch.FloatTensor]] = None,
992
- inputs_embeds: Optional[torch.FloatTensor] = None,
993
- labels: Optional[torch.LongTensor] = None,
994
- use_cache: Optional[bool] = None,
995
- output_attentions: Optional[bool] = None,
996
- output_hidden_states: Optional[bool] = None,
997
- return_dict: Optional[bool] = None,
998
- offload_cache_to_cpu: Optional[bool] = None,
999
- ) -> Union[Tuple, CausalLMOutputWithPast]:
1000
- r"""
1001
- Args:
1002
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1003
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1004
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1005
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1006
-
1007
- Returns:
1008
-
1009
- Example:
1010
-
1011
- ```python
1012
- >>> from transformers import AutoTokenizer, LlamaForCausalLM
1013
-
1014
- >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1015
- >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1016
-
1017
- >>> prompt = "Hey, are you consciours? Can you talk to me?"
1018
- >>> inputs = tokenizer(prompt, return_tensors="pt")
1019
-
1020
- >>> # Generate
1021
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1022
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1023
- "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
1024
- ```"""
1025
-
1026
- output_attentions = (
1027
- output_attentions
1028
- if output_attentions is not None
1029
- else self.config.output_attentions
1030
- )
1031
- output_hidden_states = (
1032
- output_hidden_states
1033
- if output_hidden_states is not None
1034
- else self.config.output_hidden_states
1035
- )
1036
- return_dict = (
1037
- return_dict if return_dict is not None else self.config.use_return_dict
1038
- )
1039
-
1040
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1041
- window_len = self.max_seq_len or input_ids.shape[1]
1042
- last_logits = None
1043
- for _, idx in enumerate(range(0, input_ids.shape[1], window_len)):
1044
- if idx >= 1:
1045
- if output_attentions or output_hidden_states:
1046
- raise NotImplementedError
1047
- if not use_cache:
1048
- raise NotImplementedError
1049
- outputs = self.model(
1050
- input_ids=input_ids[:, idx : idx + window_len],
1051
- attention_mask=attention_mask[
1052
- :, : idx + window_len + attention_mask.shape[1] - input_ids.shape[1]
1053
- ]
1054
- if attention_mask is not None
1055
- else None,
1056
- position_ids=position_ids[:, idx : idx + window_len]
1057
- if position_ids is not None
1058
- else None,
1059
- past_key_values=past_key_values,
1060
- inputs_embeds=inputs_embeds[:, idx : idx + window_len]
1061
- if inputs_embeds is not None
1062
- else None,
1063
- use_cache=use_cache,
1064
- output_attentions=output_attentions,
1065
- output_hidden_states=output_hidden_states,
1066
- return_dict=return_dict,
1067
- offload_cache_to_cpu=offload_cache_to_cpu,
1068
- )
1069
- past_key_values = outputs.past_key_values
1070
- if last_logits is not None:
1071
- last_logits = torch.cat((last_logits, outputs[0]), dim=-2)
1072
- last_logits = outputs[0]
1073
-
1074
- hidden_states = last_logits
1075
- logits = self.lm_head(hidden_states)
1076
-
1077
- loss = None
1078
- if labels is not None:
1079
- # Shift so that tokens < n predict n
1080
- shift_logits = logits[..., :-1, :].contiguous()
1081
- shift_labels = labels[..., 1:].contiguous()
1082
- # Flatten the tokens
1083
- loss_fct = CrossEntropyLoss()
1084
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
1085
- shift_labels = shift_labels.view(-1)
1086
- # Enable model parallelism
1087
- shift_labels = shift_labels.to(shift_logits.device)
1088
- loss = loss_fct(shift_logits, shift_labels)
1089
-
1090
- if not return_dict:
1091
- output = (logits,) + outputs[1:]
1092
- return (loss,) + output if loss is not None else output
1093
-
1094
- return CausalLMOutputWithPast(
1095
- loss=loss,
1096
- logits=logits,
1097
- past_key_values=outputs.past_key_values,
1098
- hidden_states=outputs.hidden_states,
1099
- attentions=outputs.attentions,
1100
- )
1101
-
1102
- def set_mem_id(self, mem_id):
1103
- self.mem_id = mem_id
1104
- self.model.set_mem_id(mem_id)
1105
-
1106
- def set_mem_cache_args(self, max_seq_len, mem_freq, top_k, max_cache_size):
1107
- self.mem_freq = mem_freq
1108
- self.top_k = top_k
1109
- self.max_seq_len = max_seq_len
1110
- if self.max_seq_len is not None:
1111
- assert self.max_seq_len % (self.mem_freq + 1) == 0
1112
- self.model.set_mem_cache_args(mem_freq, top_k, max_cache_size)
1113
-
1114
- def prepare_inputs_for_generation(
1115
- self,
1116
- input_ids,
1117
- past_key_values=None,
1118
- attention_mask=None,
1119
- inputs_embeds=None,
1120
- **kwargs,
1121
- ):
1122
- total_len = input_ids.shape[1]
1123
- if past_key_values:
1124
- prev_len = input_ids.shape[1] - 1
1125
- else:
1126
- prev_len = 0
1127
-
1128
- position_ids = kwargs.get("position_ids", None)
1129
-
1130
- if self.mem_freq is not None:
1131
- if position_ids is not None:
1132
- raise NotImplementedError
1133
- # T = input_ids.shape[1]
1134
-
1135
- prev_incomplete_len = prev_len % self.mem_freq
1136
- prev_complete_len = prev_len - prev_incomplete_len
1137
- incomplete_len = total_len % self.mem_freq
1138
- new_full_len = total_len - prev_complete_len - incomplete_len
1139
-
1140
- prev_input, input_ids_with_mem, input_ids_without_mem = torch.split(
1141
- input_ids, (prev_complete_len, new_full_len, incomplete_len), dim=-1
1142
- )
1143
-
1144
- bsz, _ = input_ids.size()
1145
- input_ids_with_mem = input_ids_with_mem.view(bsz, -1, self.mem_freq)
1146
- input_ids_with_mem = torch.cat(
1147
- (
1148
- input_ids_with_mem,
1149
- input_ids_with_mem.new_full(
1150
- (bsz, input_ids_with_mem.shape[1], 1), self.mem_id
1151
- ),
1152
- ),
1153
- dim=-1,
1154
- ).view(bsz, -1)
1155
- input_ids = torch.cat(
1156
- (prev_input, input_ids_with_mem, input_ids_without_mem), dim=-1
1157
- )
1158
- if attention_mask is not None:
1159
- attention_mask_with_mem, attention_mask_without_mem = torch.split(
1160
- attention_mask,
1161
- (prev_complete_len + new_full_len, incomplete_len),
1162
- dim=-1,
1163
- )
1164
- attention_mask_with_mem = attention_mask_with_mem.view(
1165
- bsz, -1, self.mem_freq
1166
- )
1167
- attention_mask_with_mem = torch.cat(
1168
- (
1169
- attention_mask_with_mem,
1170
- attention_mask_with_mem.new_ones(
1171
- (bsz, attention_mask_with_mem.shape[1], 1)
1172
- ),
1173
- ),
1174
- dim=-1,
1175
- ).view(bsz, -1)
1176
- attention_mask = torch.cat(
1177
- (attention_mask_with_mem, attention_mask_without_mem), dim=-1
1178
- )
1179
-
1180
- input_ids = input_ids[:, prev_len:]
1181
- if attention_mask is not None and position_ids is None:
1182
- # create position_ids on the fly for batch generation
1183
- position_ids = attention_mask.long().cumsum(-1) - 1
1184
- position_ids.masked_fill_(attention_mask == 0, 1)
1185
- position_ids = position_ids[:, -input_ids.shape[1] :].unsqueeze(-1)
1186
-
1187
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1188
- if (
1189
- inputs_embeds is not None
1190
- and past_key_values is None
1191
- and self.mem_freq is None
1192
- ):
1193
- model_inputs = {"inputs_embeds": inputs_embeds}
1194
- else:
1195
- model_inputs = {"input_ids": input_ids}
1196
-
1197
- model_inputs.update(
1198
- {
1199
- "position_ids": position_ids,
1200
- "past_key_values": past_key_values,
1201
- "use_cache": kwargs.get("use_cache"),
1202
- "attention_mask": attention_mask,
1203
- "offload_cache_to_cpu": kwargs.get("offload_cache_to_cpu"),
1204
- }
1205
- )
1206
- return model_inputs
1207
-
1208
- @staticmethod
1209
- def _reorder_cache(past_key_values, beam_idx):
1210
- reordered_past = ()
1211
- for layer_past in past_key_values:
1212
- reordered_past += (
1213
- tuple(
1214
- past_state.index_select(0, beam_idx) for past_state in layer_past
1215
- ),
1216
- )
1217
- return reordered_past
1218
-
1219
-
1220
- def add_mem_tokens(example, mem_freq, mem_id):
1221
- ids = example["input_ids"]
1222
- ret = []
1223
- prev_idx = 0
1224
- for t_idx in range(mem_freq, len(ids), mem_freq):
1225
- ret.extend(ids[prev_idx:t_idx])
1226
- ret.append(mem_id)
1227
- prev_idx = t_idx
1228
- ret.extend(ids[prev_idx:])
1229
- # drop attention_mask
1230
- return {"input_ids": ret}
1231
-
1232
-
1233
- def patch_llama_with_landmark_attn():
1234
- import transformers
1235
-
1236
- transformers.models.llama.modeling_llama.LlamaForCausalLM = LlamaForCausalLM
1237
- transformers.models.llama.modeling_llama.LlamaModel = LlamaModel
1238
- transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention
1239
- transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer
1240
- transformers.models.llama.modeling_llama.apply_rotary_pos_emb = apply_rotary_pos_emb
1241
-
1242
-
1243
- def set_model_mem_id(model: LlamaForCausalLM, tokenizer: LlamaTokenizer):
1244
- mem_id = tokenizer.convert_tokens_to_ids(MEM_TOKEN)
1245
- model.set_mem_id(mem_id)
1246
-
1247
-
1248
- def get_mem_id(tokenizer: LlamaTokenizer):
1249
- return tokenizer.convert_tokens_to_ids(MEM_TOKEN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/axolotl/monkeypatch/xpos_rope_llama_monkey_patch.py DELETED
@@ -1,94 +0,0 @@
1
- # pylint: skip-file
2
- """
3
- Copied from https://github.com/kaiokendev/cutoff-len-is-context-len/blob/main/util/xpos_rope_llama_monkey_patch.py
4
- """
5
- import torch
6
- import transformers
7
- import transformers.models.llama.modeling_llama
8
- from einops import rearrange
9
-
10
-
11
- class XposRotaryEmbedding(torch.nn.Module):
12
- def __init__(
13
- self,
14
- dim,
15
- max_position_embeddings=2048,
16
- base=10000,
17
- device=None,
18
- scale_base=2048,
19
- use_xpos=True,
20
- ):
21
- super().__init__()
22
- self.max_seq_len_cached = max_position_embeddings
23
- self.scale_base = scale_base
24
-
25
- inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
26
- t = torch.arange(self.max_seq_len_cached, device=device).type_as(inv_freq)
27
- freqs = torch.einsum("i , j -> i j", t, inv_freq)
28
- freqs = torch.cat((freqs, freqs), dim=-1)
29
-
30
- self.register_buffer("inv_freq", inv_freq, persistent=False)
31
- self.register_buffer("freqs_cached", freqs, persistent=False)
32
-
33
- if not use_xpos:
34
- self.register_buffer("scale", None)
35
- self.register_buffer("scale_cached", torch.ones(1))
36
- return
37
-
38
- scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
39
- power = (t - (self.max_seq_len_cached // 2)) / self.scale_base
40
- scale_cached = scale ** rearrange(power, "n -> n 1")
41
- scale_cached = torch.cat((scale_cached, scale_cached), dim=-1)
42
-
43
- self.register_buffer("scale", scale, persistent=False)
44
- self.register_buffer("scale_cached", scale_cached, persistent=False)
45
-
46
- def forward(
47
- self,
48
- x,
49
- seq_len,
50
- ):
51
- if seq_len > self.max_seq_len_cached:
52
- self.max_seq_len_cached = seq_len
53
- t = torch.arange(self.max_seq_len_cached, device=x.device).type_as(
54
- self.inv_freq
55
- )
56
- freqs = torch.einsum("i , j -> i j", t, self.inv_freq)
57
- freqs = torch.cat((freqs, freqs), dim=-1).to(dtype=x.dtype)
58
-
59
- self.register_buffer("freqs_cached", freqs)
60
-
61
- if self.scale is None:
62
- self.register_buffer(
63
- "scale_cached", torch.ones(1, device=x.device).to(dtype=x.dtype)
64
- )
65
-
66
- return self.freqs_cached.to(dtype=x.dtype), self.scale_cached
67
-
68
- power = (t - (seq_len // 2)) / self.scale_base
69
- scale = self.scale ** rearrange(power, "n -> n 1")
70
- scale = torch.cat((scale, scale), dim=-1).to(dtype=x.dtype)
71
- self.register_buffer("scale_cached", scale)
72
-
73
- return self.freqs_cached.to(dtype=x.dtype), self.scale_cached.to(dtype=x.dtype)
74
-
75
-
76
- def rotate_half(x):
77
- x1, x2 = x.chunk(2, dim=-1)
78
- return torch.cat((-x2, x1), dim=-1)
79
-
80
-
81
- def apply_rotary_pos_emb(q, k, freqs, scale=1, position_ids=None):
82
- freqs = freqs[position_ids, :]
83
- if scale.shape[-1] != 1:
84
- scale = scale[position_ids, :]
85
-
86
- q_embed = (q * freqs.cos() * scale) + (rotate_half(q) * freqs.sin() * scale)
87
- k_embed = (k * freqs.cos() * 1 / scale) + (rotate_half(k) * freqs.sin() * 1 / scale)
88
-
89
- return q_embed, k_embed
90
-
91
-
92
- def replace_llama_rope_with_xpos_rope():
93
- transformers.models.llama.modeling_llama.LlamaRotaryEmbedding = XposRotaryEmbedding
94
- transformers.models.llama.modeling_llama.apply_rotary_pos_emb = apply_rotary_pos_emb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/axolotl/utils/models.py CHANGED
@@ -247,17 +247,6 @@ def load_model(
247
 
248
  LOG.info("patching with sdp attention")
249
  hijack_llama_sdp_attention()
250
- elif cfg.is_llama_derived_model and cfg.landmark_attention:
251
- from axolotl.monkeypatch.llama_landmark_attn import (
252
- MEM_TOKEN,
253
- patch_llama_with_landmark_attn,
254
- )
255
-
256
- LOG.info("patching with landmark attention")
257
- patch_llama_with_landmark_attn()
258
-
259
- # Note: This might overwrite previous additional_special_tokens
260
- tokenizer.add_special_tokens({"additional_special_tokens": [MEM_TOKEN]})
261
 
262
  if cfg.is_mistral_derived_model and cfg.flash_attention and cfg.sample_packing:
263
  from axolotl.monkeypatch.mistral_attn_hijack_flash import (
@@ -279,14 +268,6 @@ def load_model(
279
  LOG.info("patching with flash attention")
280
  replace_mixtral_attn_with_multipack_flash_attn()
281
 
282
- if cfg.is_llama_derived_model and cfg.xpos_rope:
283
- from axolotl.monkeypatch.xpos_rope_llama_monkey_patch import (
284
- replace_llama_rope_with_xpos_rope,
285
- )
286
-
287
- LOG.info("patching with xpos rope")
288
- replace_llama_rope_with_xpos_rope()
289
-
290
  if (
291
  cfg.is_llama_derived_model
292
  and (cfg.max_packed_sequence_len or cfg.sample_packing)
 
247
 
248
  LOG.info("patching with sdp attention")
249
  hijack_llama_sdp_attention()
 
 
 
 
 
 
 
 
 
 
 
250
 
251
  if cfg.is_mistral_derived_model and cfg.flash_attention and cfg.sample_packing:
252
  from axolotl.monkeypatch.mistral_attn_hijack_flash import (
 
268
  LOG.info("patching with flash attention")
269
  replace_mixtral_attn_with_multipack_flash_attn()
270
 
 
 
 
 
 
 
 
 
271
  if (
272
  cfg.is_llama_derived_model
273
  and (cfg.max_packed_sequence_len or cfg.sample_packing)