Support Sample packing for phi arch (#586)
Browse files* phi sequence packing
* sample packing fixes
* fix linting
* fix inference and phi e2e tests
* update phi example now that sample packing works
* wandb import keeps getting moved around
- .mypy.ini +6 -0
- examples/phi/phi-ft.yml +4 -4
- src/axolotl/models/__init__.py +0 -0
- src/axolotl/models/phi/__init__.py +6 -0
- src/axolotl/models/phi/configuration_mixformer_sequential.py +63 -0
- src/axolotl/models/phi/modeling_mixformer_sequential.py +934 -0
- src/axolotl/utils/models.py +11 -0
- tests/e2e/.gitignore +1 -0
- tests/e2e/test_lora_llama.py +4 -19
- tests/e2e/test_phi.py +109 -0
.mypy.ini
CHANGED
@@ -8,6 +8,9 @@ ignore_missing_imports = True
|
|
8 |
[mypy-axolotl.monkeypatch.*]
|
9 |
ignore_errors = True
|
10 |
|
|
|
|
|
|
|
11 |
[mypy-flash_attn.*]
|
12 |
ignore_missing_imports = True
|
13 |
|
@@ -20,6 +23,9 @@ ignore_missing_imports = True
|
|
20 |
[mypy-peft]
|
21 |
ignore_missing_imports = True
|
22 |
|
|
|
|
|
|
|
23 |
[mypy-bitsandbytes]
|
24 |
ignore_missing_imports = True
|
25 |
|
|
|
8 |
[mypy-axolotl.monkeypatch.*]
|
9 |
ignore_errors = True
|
10 |
|
11 |
+
[mypy-axolotl.models.phi.*]
|
12 |
+
ignore_errors = True
|
13 |
+
|
14 |
[mypy-flash_attn.*]
|
15 |
ignore_missing_imports = True
|
16 |
|
|
|
23 |
[mypy-peft]
|
24 |
ignore_missing_imports = True
|
25 |
|
26 |
+
[mypy-wandb]
|
27 |
+
ignore_missing_imports = True
|
28 |
+
|
29 |
[mypy-bitsandbytes]
|
30 |
ignore_missing_imports = True
|
31 |
|
examples/phi/phi-ft.yml
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
base_model: microsoft/phi-1_5
|
2 |
base_model_config: microsoft/phi-1_5
|
3 |
-
model_type:
|
4 |
tokenizer_type: AutoTokenizer
|
5 |
is_llama_derived_model: false
|
6 |
trust_remote_code: true
|
@@ -18,7 +18,7 @@ val_set_size: 0.05
|
|
18 |
output_dir: ./phi-sft-out
|
19 |
|
20 |
sequence_len: 2048
|
21 |
-
sample_packing:
|
22 |
pad_to_sequence_len:
|
23 |
|
24 |
adapter:
|
@@ -35,10 +35,10 @@ wandb_watch:
|
|
35 |
wandb_run_id:
|
36 |
wandb_log_model:
|
37 |
|
38 |
-
gradient_accumulation_steps:
|
39 |
micro_batch_size: 1
|
40 |
num_epochs: 4
|
41 |
-
optimizer:
|
42 |
adam_beta2: 0.95
|
43 |
adam_epsilon: 0.00001
|
44 |
max_grad_norm: 1.0
|
|
|
1 |
base_model: microsoft/phi-1_5
|
2 |
base_model_config: microsoft/phi-1_5
|
3 |
+
model_type: MixFormerSequentialForCausalLM
|
4 |
tokenizer_type: AutoTokenizer
|
5 |
is_llama_derived_model: false
|
6 |
trust_remote_code: true
|
|
|
18 |
output_dir: ./phi-sft-out
|
19 |
|
20 |
sequence_len: 2048
|
21 |
+
sample_packing: true
|
22 |
pad_to_sequence_len:
|
23 |
|
24 |
adapter:
|
|
|
35 |
wandb_run_id:
|
36 |
wandb_log_model:
|
37 |
|
38 |
+
gradient_accumulation_steps: 1
|
39 |
micro_batch_size: 1
|
40 |
num_epochs: 4
|
41 |
+
optimizer: adamw_torch
|
42 |
adam_beta2: 0.95
|
43 |
adam_epsilon: 0.00001
|
44 |
max_grad_norm: 1.0
|
src/axolotl/models/__init__.py
ADDED
File without changes
|
src/axolotl/models/phi/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
MixFormers model architecture used for phi models
|
3 |
+
"""
|
4 |
+
|
5 |
+
from .configuration_mixformer_sequential import MixFormerSequentialConfig # noqa
|
6 |
+
from .modeling_mixformer_sequential import MixFormerSequentialForCausalLM # noqa
|
src/axolotl/models/phi/configuration_mixformer_sequential.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pylint: skip-file
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# Licensed under the MIT license.
|
5 |
+
|
6 |
+
import math
|
7 |
+
from typing import Any, Dict, List, Optional, Union
|
8 |
+
|
9 |
+
from transformers import PretrainedConfig
|
10 |
+
|
11 |
+
|
12 |
+
class MixFormerSequentialConfig(PretrainedConfig):
|
13 |
+
"""MixFormer (sequential for DeepSpeed) configuration."""
|
14 |
+
|
15 |
+
model_type = "mixformer-sequential"
|
16 |
+
|
17 |
+
attribute_map = {
|
18 |
+
"max_position_embeddings": "n_positions",
|
19 |
+
"hidden_size": "n_embd",
|
20 |
+
"num_attention_heads": "n_head",
|
21 |
+
"num_hidden_layers": "n_layer",
|
22 |
+
"input_emb_layer": "embd_layer", # `input_emb_layer` key is for backward compatibility
|
23 |
+
"blocks": "architecture", # `blocks` key is for backward compatibility
|
24 |
+
}
|
25 |
+
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
vocab_size: Optional[int] = 50304,
|
29 |
+
n_positions: Optional[int] = 2048,
|
30 |
+
n_embd: Optional[int] = 1024,
|
31 |
+
n_layer: Optional[int] = 20,
|
32 |
+
n_inner: Optional[int] = None,
|
33 |
+
n_head: Optional[int] = 16,
|
34 |
+
rotary_dim: Optional[int] = 32,
|
35 |
+
activation_function: Optional[str] = "gelu_new",
|
36 |
+
embd_layer: Optional[str] = "default",
|
37 |
+
architecture: Union[Dict[str, Any], List[Dict[str, Any]]] = None,
|
38 |
+
embd_pdrop: Optional[float] = 0.0,
|
39 |
+
resid_pdrop: Optional[float] = 0.0,
|
40 |
+
layer_norm_epsilon: Optional[float] = 1e-5,
|
41 |
+
initializer_range: Optional[float] = 0.02,
|
42 |
+
tie_word_embeddings: Optional[bool] = False,
|
43 |
+
pad_vocab_size_multiple: Optional[int] = 64,
|
44 |
+
**kwargs
|
45 |
+
) -> None:
|
46 |
+
self.vocab_size = int(
|
47 |
+
math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
|
48 |
+
)
|
49 |
+
self.n_positions = n_positions
|
50 |
+
self.n_embd = n_embd
|
51 |
+
self.n_layer = n_layer
|
52 |
+
self.n_inner = n_inner
|
53 |
+
self.n_head = n_head
|
54 |
+
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
55 |
+
self.activation_function = activation_function
|
56 |
+
self.embd_layer = embd_layer
|
57 |
+
self.architecture = architecture
|
58 |
+
self.embd_pdrop = embd_pdrop
|
59 |
+
self.resid_pdrop = resid_pdrop
|
60 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
61 |
+
self.initializer_range = initializer_range
|
62 |
+
|
63 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
src/axolotl/models/phi/modeling_mixformer_sequential.py
ADDED
@@ -0,0 +1,934 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pylint: skip-file
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# Licensed under the MIT license.
|
5 |
+
|
6 |
+
# BSD 3-Clause License
|
7 |
+
#
|
8 |
+
# Copyright (c) 2022, Tri Dao, [email protected].
|
9 |
+
# All rights reserved.
|
10 |
+
#
|
11 |
+
# Redistribution and use in source and binary forms, with or without
|
12 |
+
# modification, are permitted provided that the following conditions are met:
|
13 |
+
#
|
14 |
+
# * Redistributions of source code must retain the above copyright notice, this
|
15 |
+
# list of conditions and the following disclaimer.
|
16 |
+
#
|
17 |
+
# * Redistributions in binary form must reproduce the above copyright notice,
|
18 |
+
# this list of conditions and the following disclaimer in the documentation
|
19 |
+
# and/or other materials provided with the distribution.
|
20 |
+
#
|
21 |
+
# * Neither the name of the copyright holder nor the names of its
|
22 |
+
# contributors may be used to endorse or promote products derived from
|
23 |
+
# this software without specific prior written permission.
|
24 |
+
#
|
25 |
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
26 |
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
27 |
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
28 |
+
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
29 |
+
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
30 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
31 |
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
32 |
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
33 |
+
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
34 |
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
35 |
+
|
36 |
+
from __future__ import annotations
|
37 |
+
|
38 |
+
import copy
|
39 |
+
import inspect
|
40 |
+
from dataclasses import dataclass, field
|
41 |
+
from typing import Any, Dict, Optional, Tuple
|
42 |
+
|
43 |
+
import torch
|
44 |
+
import torch.nn as nn
|
45 |
+
from einops import rearrange
|
46 |
+
from flash_attn.flash_attn_interface import (
|
47 |
+
flash_attn_kvpacked_func,
|
48 |
+
flash_attn_qkvpacked_func,
|
49 |
+
flash_attn_varlen_qkvpacked_func,
|
50 |
+
)
|
51 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
52 |
+
from transformers.activations import ACT2FN
|
53 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
54 |
+
|
55 |
+
from ...monkeypatch.utils import get_cu_seqlens_from_pos_ids
|
56 |
+
from .configuration_mixformer_sequential import MixFormerSequentialConfig
|
57 |
+
|
58 |
+
|
59 |
+
@dataclass
|
60 |
+
class InferenceParams:
|
61 |
+
"""Inference parameters that are passed to the main model in order
|
62 |
+
to efficienly calculate and store the context during inference.
|
63 |
+
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
64 |
+
|
65 |
+
max_sequence_len: int
|
66 |
+
max_batch_size: int
|
67 |
+
sequence_len_offset: int = 0
|
68 |
+
batch_size_offset: int = 0
|
69 |
+
key_value_memory_dict: dict = field(default_factory=dict)
|
70 |
+
fused_ft_kernel: bool = False
|
71 |
+
lengths_per_sample: Optional[torch.Tensor] = None
|
72 |
+
|
73 |
+
|
74 |
+
class Embedding(nn.Module):
|
75 |
+
"""Token embedding with dropout."""
|
76 |
+
|
77 |
+
def __init__(self, config: PretrainedConfig) -> None:
|
78 |
+
super().__init__()
|
79 |
+
|
80 |
+
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
81 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
82 |
+
|
83 |
+
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
|
84 |
+
input_shape = input_ids.size()
|
85 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
86 |
+
|
87 |
+
hidden_states = self.wte(input_ids)
|
88 |
+
hidden_states = self.drop(hidden_states)
|
89 |
+
|
90 |
+
return hidden_states
|
91 |
+
|
92 |
+
|
93 |
+
class RotaryEmbedding(nn.Module):
|
94 |
+
"""PyTorch implementation of `flash-attn` RotaryEmbedding layer.
|
95 |
+
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
dim: int,
|
100 |
+
base: Optional[int] = 10000,
|
101 |
+
scale_base: Optional[float] = None,
|
102 |
+
device: Optional[str] = None,
|
103 |
+
**kwargs,
|
104 |
+
) -> None:
|
105 |
+
super().__init__()
|
106 |
+
|
107 |
+
if scale_base is not None:
|
108 |
+
raise NotImplementedError
|
109 |
+
|
110 |
+
# Generate and save the inverse frequency buffer (non-trainable)
|
111 |
+
self.dim = dim
|
112 |
+
self.base = base
|
113 |
+
self.scale_base = scale_base
|
114 |
+
self.device = device
|
115 |
+
|
116 |
+
inv_freq = 1.0 / (
|
117 |
+
base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
|
118 |
+
)
|
119 |
+
self.register_buffer("inv_freq", inv_freq)
|
120 |
+
|
121 |
+
scale = (
|
122 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
|
123 |
+
/ (1.4 * dim)
|
124 |
+
if scale_base is not None
|
125 |
+
else None
|
126 |
+
)
|
127 |
+
self.register_buffer("scale", scale)
|
128 |
+
|
129 |
+
self._seq_len_cached = 0
|
130 |
+
self._cos_cached = None
|
131 |
+
self._sin_cached = None
|
132 |
+
self._cos_k_cached = None
|
133 |
+
self._sin_k_cached = None
|
134 |
+
|
135 |
+
def _update_cos_sin_cache(
|
136 |
+
self, x: torch.FloatTensor, seqlen_offset: Optional[int] = 0
|
137 |
+
) -> None:
|
138 |
+
# Reset the tables if the sequence length has changed,
|
139 |
+
# or if we're on a new device (possibly due to tracing for instance)
|
140 |
+
seqlen = x.shape[1] + seqlen_offset
|
141 |
+
|
142 |
+
# Re-generate the inverse frequency buffer if it's not fp32
|
143 |
+
# (for instance if model.half() was called)
|
144 |
+
if self.inv_freq.dtype != "torch.float32":
|
145 |
+
self.inv_freq = 1.0 / (
|
146 |
+
self.base
|
147 |
+
** (
|
148 |
+
torch.arange(
|
149 |
+
0, self.dim, 2, device=self.device, dtype=torch.float32
|
150 |
+
)
|
151 |
+
/ self.dim
|
152 |
+
)
|
153 |
+
)
|
154 |
+
|
155 |
+
if (
|
156 |
+
seqlen > self._seq_len_cached
|
157 |
+
or self._cos_cached.device != x.device
|
158 |
+
or self._cos_cached.dtype != x.dtype
|
159 |
+
):
|
160 |
+
self._seq_len_cached = seqlen
|
161 |
+
t = torch.arange(seqlen, device=x.device, dtype=torch.float32)
|
162 |
+
|
163 |
+
# Don't do einsum, it converts fp32 to fp16
|
164 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
165 |
+
freqs = torch.outer(
|
166 |
+
t, self.inv_freq.to(device=t.device, dtype=torch.float32)
|
167 |
+
)
|
168 |
+
if self.scale is None:
|
169 |
+
self._cos_cached = torch.cos(freqs).to(x.dtype)
|
170 |
+
self._sin_cached = torch.sin(freqs).to(x.dtype)
|
171 |
+
else:
|
172 |
+
power = (
|
173 |
+
torch.arange(
|
174 |
+
seqlen, dtype=self.scale.dtype, device=self.scale.device
|
175 |
+
)
|
176 |
+
- seqlen // 2
|
177 |
+
) / self.scale_base
|
178 |
+
scale = self.scale.to(device=power.device) ** rearrange(
|
179 |
+
power, "s -> s 1"
|
180 |
+
)
|
181 |
+
|
182 |
+
# We want the multiplication by scale to happen in fp32
|
183 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype)
|
184 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype)
|
185 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype)
|
186 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype)
|
187 |
+
|
188 |
+
def apply_rotary_emb_qkv(
|
189 |
+
self,
|
190 |
+
qkv: torch.FloatTensor,
|
191 |
+
sin: torch.FloatTensor,
|
192 |
+
cos: torch.FloatTensor,
|
193 |
+
sin_k: Optional[torch.FloatTensor] = None,
|
194 |
+
cos_k: Optional[torch.FloatTensor] = None,
|
195 |
+
) -> torch.FloatTensor:
|
196 |
+
_, seqlen, three, _, headdim = qkv.shape
|
197 |
+
assert three == 3
|
198 |
+
|
199 |
+
rotary_seqlen, rotary_dim = cos.shape
|
200 |
+
rotary_dim *= 2
|
201 |
+
assert rotary_dim <= headdim
|
202 |
+
assert seqlen <= rotary_seqlen
|
203 |
+
|
204 |
+
cos_k = cos if cos_k is None else cos_k
|
205 |
+
sin_k = sin if sin_k is None else sin_k
|
206 |
+
assert (
|
207 |
+
sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen, rotary_dim // 2)
|
208 |
+
)
|
209 |
+
|
210 |
+
q_rot = qkv[:, :, 0, :, :rotary_dim]
|
211 |
+
q_pass = qkv[:, :, 0, :, rotary_dim:]
|
212 |
+
|
213 |
+
k_rot = qkv[:, :, 1, :, :rotary_dim]
|
214 |
+
k_pass = qkv[:, :, 1, :, rotary_dim:]
|
215 |
+
|
216 |
+
# Splits the queries and keys in half
|
217 |
+
q1, q2 = q_rot.chunk(2, dim=-1)
|
218 |
+
k1, k2 = k_rot.chunk(2, dim=-1)
|
219 |
+
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(
|
220 |
+
sin[:seqlen], "s d -> s 1 d"
|
221 |
+
)
|
222 |
+
|
223 |
+
# Casts to fp32 are necessary to prevent fp16 overflow issues
|
224 |
+
q1, q2, k1, k2, c, s = [
|
225 |
+
t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]
|
226 |
+
]
|
227 |
+
|
228 |
+
# Computes the new keys and queries, recasting to original dtype
|
229 |
+
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
|
230 |
+
|
231 |
+
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
|
232 |
+
|
233 |
+
return torch.cat(
|
234 |
+
[
|
235 |
+
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
|
236 |
+
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
237 |
+
qkv[:, :, 2:3, :, :],
|
238 |
+
],
|
239 |
+
axis=2,
|
240 |
+
)
|
241 |
+
|
242 |
+
def forward(
|
243 |
+
self, qkv: torch.Tensor, seqlen_offset: int = 0
|
244 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
245 |
+
"""Perform the forward pass.
|
246 |
+
|
247 |
+
Args:
|
248 |
+
qkv: Query, key and value tensors of shape (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim).
|
249 |
+
seqlen_offset: Used in generation where the passed `qkv` is only the last token in the batch.
|
250 |
+
|
251 |
+
Returns:
|
252 |
+
New `qkv` and the cached sinusoids.
|
253 |
+
|
254 |
+
"""
|
255 |
+
|
256 |
+
self._update_cos_sin_cache(qkv, seqlen_offset)
|
257 |
+
|
258 |
+
return self.apply_rotary_emb_qkv(
|
259 |
+
qkv, self._sin_cached[seqlen_offset:], self._cos_cached[seqlen_offset:]
|
260 |
+
)
|
261 |
+
|
262 |
+
|
263 |
+
def _update_kv_cache(kv, inference_params, layer_idx):
|
264 |
+
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
|
265 |
+
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
266 |
+
# Pre-allocate memory for key-values for inference.
|
267 |
+
num_heads, head_dim = kv.shape[-2:]
|
268 |
+
if layer_idx not in inference_params.key_value_memory_dict:
|
269 |
+
kv_cache = torch.empty(
|
270 |
+
inference_params.max_batch_size,
|
271 |
+
inference_params.max_sequence_len,
|
272 |
+
2,
|
273 |
+
num_heads,
|
274 |
+
head_dim,
|
275 |
+
dtype=kv.dtype,
|
276 |
+
device=kv.device,
|
277 |
+
)
|
278 |
+
inference_params.key_value_memory_dict[layer_idx] = kv_cache
|
279 |
+
else:
|
280 |
+
kv_cache = inference_params.key_value_memory_dict[layer_idx]
|
281 |
+
|
282 |
+
# Adjust key and value for inference
|
283 |
+
batch_start = inference_params.batch_size_offset
|
284 |
+
batch_end = batch_start + kv.shape[0]
|
285 |
+
sequence_start = inference_params.sequence_len_offset
|
286 |
+
sequence_end = sequence_start + kv.shape[1]
|
287 |
+
assert batch_end <= (
|
288 |
+
kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0] # noqa
|
289 |
+
)
|
290 |
+
assert sequence_end <= (
|
291 |
+
kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2] # noqa
|
292 |
+
)
|
293 |
+
|
294 |
+
assert kv_cache is not None
|
295 |
+
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
296 |
+
kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
|
297 |
+
return kv
|
298 |
+
|
299 |
+
|
300 |
+
class MLP(nn.Module):
|
301 |
+
"""Multi-Layer Perceptron.
|
302 |
+
|
303 |
+
Reference:
|
304 |
+
Attention Is All You Need.
|
305 |
+
https://arxiv.org/pdf/1706.03762.pdf.
|
306 |
+
|
307 |
+
"""
|
308 |
+
|
309 |
+
def __init__(
|
310 |
+
self,
|
311 |
+
config: PretrainedConfig,
|
312 |
+
n_inner: Optional[int] = None,
|
313 |
+
act_fn: Optional[str] = None,
|
314 |
+
) -> None:
|
315 |
+
super().__init__()
|
316 |
+
|
317 |
+
act_fn = config.activation_function if act_fn is None else act_fn
|
318 |
+
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
|
319 |
+
|
320 |
+
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
321 |
+
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
322 |
+
|
323 |
+
self.fc1 = nn.Linear(config.n_embd, n_inner)
|
324 |
+
self.fc2 = nn.Linear(n_inner, config.n_embd)
|
325 |
+
self.act = ACT2FN[act_fn]
|
326 |
+
|
327 |
+
def _load_from_state_dict(
|
328 |
+
self,
|
329 |
+
state_dict,
|
330 |
+
prefix,
|
331 |
+
local_metadata,
|
332 |
+
strict,
|
333 |
+
missing_keys,
|
334 |
+
unexpected_keys,
|
335 |
+
error_msgs,
|
336 |
+
):
|
337 |
+
old_keys = [
|
338 |
+
prefix + "fc_in.weight",
|
339 |
+
prefix + "fc_out.weight",
|
340 |
+
prefix + "fc_in.bias",
|
341 |
+
prefix + "fc_out.bias",
|
342 |
+
]
|
343 |
+
new_keys = [
|
344 |
+
prefix + "fc1.weight",
|
345 |
+
prefix + "fc2.weight",
|
346 |
+
prefix + "fc1.bias",
|
347 |
+
prefix + "fc2.bias",
|
348 |
+
]
|
349 |
+
|
350 |
+
if all(k in state_dict for k in old_keys) and not all(
|
351 |
+
k in state_dict for k in new_keys
|
352 |
+
):
|
353 |
+
# Older version of `MLP` saved with different key names.
|
354 |
+
for old_key, new_key in zip(old_keys, new_keys):
|
355 |
+
state_dict[new_key] = state_dict.pop(old_key)
|
356 |
+
|
357 |
+
return super()._load_from_state_dict(
|
358 |
+
state_dict,
|
359 |
+
prefix,
|
360 |
+
local_metadata,
|
361 |
+
strict,
|
362 |
+
missing_keys,
|
363 |
+
unexpected_keys,
|
364 |
+
error_msgs,
|
365 |
+
)
|
366 |
+
|
367 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
368 |
+
hidden_states = self.fc1(hidden_states)
|
369 |
+
hidden_states = self.act(hidden_states)
|
370 |
+
hidden_states = self.fc2(hidden_states)
|
371 |
+
|
372 |
+
return hidden_states
|
373 |
+
|
374 |
+
|
375 |
+
class FusedMLP(nn.Module):
|
376 |
+
"""Fused Multi-Layer Perceptron from `flash-attn`.
|
377 |
+
|
378 |
+
Reference:
|
379 |
+
https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/ops/fused_dense.py.
|
380 |
+
|
381 |
+
"""
|
382 |
+
|
383 |
+
def __init__(
|
384 |
+
self,
|
385 |
+
config: PretrainedConfig,
|
386 |
+
n_inner: Optional[int] = None,
|
387 |
+
act_fn: Optional[str] = None,
|
388 |
+
raise_on_missing: bool = False,
|
389 |
+
) -> None:
|
390 |
+
super().__init__()
|
391 |
+
|
392 |
+
act_fn = config.activation_function if act_fn is None else act_fn
|
393 |
+
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
|
394 |
+
|
395 |
+
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
396 |
+
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
397 |
+
|
398 |
+
gelu_activations = ["gelu_new", "gelu_fast", "gelu_approx"] # noqa
|
399 |
+
activation = "gelu_approx" if act_fn in gelu_activations else "relu" # noqa
|
400 |
+
|
401 |
+
self.mlp = MLP(config, n_inner=n_inner, act_fn=act_fn)
|
402 |
+
|
403 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
404 |
+
return self.mlp(hidden_states)
|
405 |
+
|
406 |
+
|
407 |
+
class SelfAttention(nn.Module):
|
408 |
+
"""Implement the scaled dot product attention with softmax.
|
409 |
+
Adapted from https://github.com/Dao-AILab/flash-attention.
|
410 |
+
Arguments
|
411 |
+
---------
|
412 |
+
softmax_scale: The temperature to use for the softmax attention.
|
413 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
414 |
+
runtime)
|
415 |
+
attention_dropout: The dropout rate to apply to the attention
|
416 |
+
(default: 0.0)
|
417 |
+
"""
|
418 |
+
|
419 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
420 |
+
super().__init__()
|
421 |
+
self.causal = causal
|
422 |
+
self.softmax_scale = softmax_scale
|
423 |
+
self.drop = nn.Dropout(attention_dropout)
|
424 |
+
|
425 |
+
def forward(
|
426 |
+
self, qkv, causal=None, key_padding_mask=None, cu_seqlens=None, max_seqlen=None
|
427 |
+
):
|
428 |
+
"""Implements the multihead softmax attention.
|
429 |
+
Arguments
|
430 |
+
---------
|
431 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
|
432 |
+
causal: if passed, will override self.causal
|
433 |
+
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
434 |
+
False means to mask out. (B, S)
|
435 |
+
"""
|
436 |
+
causal = self.causal if causal is None else causal
|
437 |
+
if cu_seqlens is not None:
|
438 |
+
return flash_attn_varlen_qkvpacked_func(
|
439 |
+
qkv.squeeze(0),
|
440 |
+
cu_seqlens,
|
441 |
+
max_seqlen,
|
442 |
+
dropout_p=self.drop.p,
|
443 |
+
softmax_scale=self.softmax_scale,
|
444 |
+
causal=causal,
|
445 |
+
)
|
446 |
+
else:
|
447 |
+
return flash_attn_qkvpacked_func(
|
448 |
+
qkv,
|
449 |
+
dropout_p=self.drop.p,
|
450 |
+
softmax_scale=self.softmax_scale,
|
451 |
+
causal=causal,
|
452 |
+
)
|
453 |
+
|
454 |
+
|
455 |
+
class CrossAttention(nn.Module):
|
456 |
+
"""Implement the scaled dot product attention with softmax.
|
457 |
+
Adapted from https://github.com/Dao-AILab/flash-attention.
|
458 |
+
Arguments
|
459 |
+
---------
|
460 |
+
softmax_scale: The temperature to use for the softmax attention.
|
461 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
462 |
+
runtime)
|
463 |
+
attention_dropout: The dropout rate to apply to the attention
|
464 |
+
(default: 0.0)
|
465 |
+
"""
|
466 |
+
|
467 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
468 |
+
super().__init__()
|
469 |
+
self.causal = causal
|
470 |
+
self.softmax_scale = softmax_scale
|
471 |
+
self.drop = nn.Dropout(attention_dropout)
|
472 |
+
|
473 |
+
def forward(self, q, kv, causal=None, key_padding_mask=None):
|
474 |
+
"""Implements the multihead softmax attention.
|
475 |
+
Arguments
|
476 |
+
---------
|
477 |
+
q: The tensor containing the query. (B, Sq, H, D)
|
478 |
+
kv: The tensor containing the key and value. (B, Sk, 2, H, D)
|
479 |
+
causal: if passed, will override self.causal
|
480 |
+
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
481 |
+
False means to mask out. (B, Sk)
|
482 |
+
"""
|
483 |
+
causal = self.causal if causal is None else causal
|
484 |
+
return flash_attn_kvpacked_func(
|
485 |
+
q,
|
486 |
+
kv,
|
487 |
+
dropout_p=self.drop.p,
|
488 |
+
softmax_scale=self.softmax_scale,
|
489 |
+
causal=causal,
|
490 |
+
)
|
491 |
+
|
492 |
+
|
493 |
+
def find_mha_dims(
|
494 |
+
config: PretrainedConfig,
|
495 |
+
n_head: Optional[int] = None,
|
496 |
+
head_dim: Optional[int] = None,
|
497 |
+
) -> Tuple[int, int]:
|
498 |
+
"""Validate and return the number of heads and head dimension for multi-head attention.
|
499 |
+
|
500 |
+
Args:
|
501 |
+
config: Model configuration.
|
502 |
+
n_head: Number of heads.
|
503 |
+
head_dim: Head dimension.
|
504 |
+
|
505 |
+
Returns:
|
506 |
+
Number of heads and head dimension.
|
507 |
+
|
508 |
+
"""
|
509 |
+
|
510 |
+
assert all(
|
511 |
+
hasattr(config, attr) for attr in ["n_embd", "n_head"]
|
512 |
+
), "`config` must have `n_embd` and `n_head` attributes."
|
513 |
+
|
514 |
+
if head_dim is None:
|
515 |
+
assert (
|
516 |
+
config.n_embd % config.n_head == 0
|
517 |
+
), f"Hidden size ({config.n_embd}) must be divisible by the number of heads ({config.n_head})."
|
518 |
+
|
519 |
+
if n_head is None and head_dim is None:
|
520 |
+
head_dim = config.n_embd // config.n_head
|
521 |
+
n_head = config.n_head
|
522 |
+
elif n_head is None or head_dim is None:
|
523 |
+
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
|
524 |
+
|
525 |
+
return n_head, head_dim
|
526 |
+
|
527 |
+
|
528 |
+
class MHA(nn.Module):
|
529 |
+
"""Multi-head attention layer.
|
530 |
+
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
531 |
+
|
532 |
+
def __init__(
|
533 |
+
self,
|
534 |
+
config: PretrainedConfig,
|
535 |
+
rotary_dim: Optional[int] = None,
|
536 |
+
n_head: Optional[int] = None,
|
537 |
+
head_dim: Optional[int] = None,
|
538 |
+
bias: Optional[bool] = True,
|
539 |
+
dropout: Optional[float] = 0.0,
|
540 |
+
softmax_scale: Optional[float] = None,
|
541 |
+
causal: Optional[bool] = True,
|
542 |
+
layer_idx: Optional[int] = None,
|
543 |
+
rotary_emb_scale_base: Optional[float] = None,
|
544 |
+
return_residual: Optional[bool] = False,
|
545 |
+
checkpointing: Optional[bool] = False,
|
546 |
+
device: Optional[str] = None,
|
547 |
+
dtype: Optional[torch.dtype] = None,
|
548 |
+
fused_dense: Optional[bool] = True,
|
549 |
+
flash_attn: Optional[bool] = True,
|
550 |
+
cutlass_attn: Optional[bool] = False,
|
551 |
+
flash_rotary: Optional[bool] = True,
|
552 |
+
raise_on_missing: Optional[bool] = False,
|
553 |
+
) -> None:
|
554 |
+
super().__init__()
|
555 |
+
|
556 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
557 |
+
n_head, head_dim = find_mha_dims(config, n_head, head_dim)
|
558 |
+
|
559 |
+
self.hidden_size = config.n_embd
|
560 |
+
self.n_head = n_head
|
561 |
+
self.head_dim = head_dim
|
562 |
+
self.op_size = n_head * head_dim
|
563 |
+
|
564 |
+
self.causal = causal
|
565 |
+
self.layer_idx = layer_idx
|
566 |
+
self.rotary_emb_dim = (
|
567 |
+
rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
|
568 |
+
)
|
569 |
+
self.fused_dense = fused_dense
|
570 |
+
self.flash_attn = flash_attn
|
571 |
+
self.cutlass_attn = cutlass_attn
|
572 |
+
self.flash_rotary = flash_rotary
|
573 |
+
self.return_residual = return_residual
|
574 |
+
self.checkpointing = checkpointing
|
575 |
+
|
576 |
+
if self.rotary_emb_dim > 0:
|
577 |
+
rotary_kwargs = {"device": device}
|
578 |
+
if rotary_emb_scale_base is not None and rotary_emb_scale_base > 0.0:
|
579 |
+
rotary_kwargs["scale_base"] = rotary_emb_scale_base
|
580 |
+
|
581 |
+
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, **rotary_kwargs)
|
582 |
+
else:
|
583 |
+
pass
|
584 |
+
|
585 |
+
self.Wqkv = nn.Linear(
|
586 |
+
self.hidden_size, 3 * self.op_size, bias=bias, **factory_kwargs
|
587 |
+
)
|
588 |
+
self.out_proj = nn.Linear(
|
589 |
+
self.op_size, self.hidden_size, bias=bias, **factory_kwargs
|
590 |
+
)
|
591 |
+
|
592 |
+
self.inner_attn = SelfAttention(
|
593 |
+
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
|
594 |
+
)
|
595 |
+
self.inner_cross_attn = CrossAttention(
|
596 |
+
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
|
597 |
+
)
|
598 |
+
|
599 |
+
def _update_kv_cache(
|
600 |
+
self, kv: torch.FloatTensor, inference_params: InferenceParams
|
601 |
+
) -> None:
|
602 |
+
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
|
603 |
+
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
604 |
+
|
605 |
+
assert (
|
606 |
+
self.layer_idx is not None
|
607 |
+
), "Generation requires layer_idx in the constructor"
|
608 |
+
|
609 |
+
return _update_kv_cache(kv, inference_params, self.layer_idx)
|
610 |
+
|
611 |
+
def forward(
|
612 |
+
self,
|
613 |
+
x: torch.FloatTensor,
|
614 |
+
x_kv: Optional[torch.FloatTensor] = None,
|
615 |
+
key_padding_mask: Optional[torch.BoolTensor] = None,
|
616 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
617 |
+
max_seqlen: Optional[int] = None,
|
618 |
+
mixer_subset: Optional[torch.LongTensor] = None,
|
619 |
+
past_cache: Optional[InferenceParams] = None,
|
620 |
+
**kwargs,
|
621 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
622 |
+
"""Perform the forward pass.
|
623 |
+
|
624 |
+
Args:
|
625 |
+
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
|
626 |
+
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
|
627 |
+
is the is the sum of the sequence lengths in the batch.
|
628 |
+
x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
|
629 |
+
key_padding_mask: boolean mask, True means to keep, False means to mask out.
|
630 |
+
(batch, seqlen). Only applicable when not using FlashAttention.
|
631 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
632 |
+
of the sequences in the batch, used to index into x. Only applicable when using
|
633 |
+
FlashAttention.
|
634 |
+
max_seqlen: int. Maximum sequence length in the batch.
|
635 |
+
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
636 |
+
before applying the query projection. Useful for e.g., ViT where we only care
|
637 |
+
about the CLS token in the last layer.
|
638 |
+
past_cache: For generation only.
|
639 |
+
|
640 |
+
Returns:
|
641 |
+
(batch, seqlen, hidden_dim) if cu_seqlens is None and max_seqlen is None,
|
642 |
+
else (total, hidden_dim) where total is the is the sum of the sequence lengths
|
643 |
+
in the batch.
|
644 |
+
|
645 |
+
"""
|
646 |
+
|
647 |
+
if cu_seqlens is not None:
|
648 |
+
assert max_seqlen is not None
|
649 |
+
assert key_padding_mask is None
|
650 |
+
assert self.flash_attn
|
651 |
+
# assert self.rotary_emb_dim == 0
|
652 |
+
|
653 |
+
if key_padding_mask is not None:
|
654 |
+
assert cu_seqlens is None
|
655 |
+
assert max_seqlen is None
|
656 |
+
assert not self.flash_attn
|
657 |
+
|
658 |
+
if past_cache is not None:
|
659 |
+
assert key_padding_mask is None
|
660 |
+
assert cu_seqlens is None and max_seqlen is None
|
661 |
+
|
662 |
+
attn_kwargs = {"key_padding_mask": key_padding_mask}
|
663 |
+
|
664 |
+
assert x_kv is None and mixer_subset is None
|
665 |
+
|
666 |
+
qkv = self.Wqkv(x)
|
667 |
+
qkv = rearrange(
|
668 |
+
qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim
|
669 |
+
)
|
670 |
+
|
671 |
+
if past_cache is None:
|
672 |
+
if self.rotary_emb_dim > 0:
|
673 |
+
qkv = self.rotary_emb(qkv)
|
674 |
+
context = self.inner_attn(
|
675 |
+
qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, **attn_kwargs
|
676 |
+
)
|
677 |
+
|
678 |
+
else:
|
679 |
+
if self.rotary_emb_dim > 0:
|
680 |
+
qkv = self.rotary_emb(qkv, seqlen_offset=past_cache.sequence_len_offset)
|
681 |
+
q = qkv[:, :, 0]
|
682 |
+
kv = self._update_kv_cache(qkv[:, :, 1:], past_cache)
|
683 |
+
# If we're processing the prompt, causal=None (use self.causal).
|
684 |
+
# If we're decoding, then causal=False.
|
685 |
+
causal = None if past_cache.sequence_len_offset == 0 else False
|
686 |
+
context = self.inner_cross_attn(q, kv, causal=causal)
|
687 |
+
|
688 |
+
out = rearrange(context, "... h d -> ... (h d)")
|
689 |
+
out = self.out_proj(out)
|
690 |
+
|
691 |
+
return out if not self.return_residual else (out, x)
|
692 |
+
|
693 |
+
|
694 |
+
class ParallelBlock(nn.Module):
|
695 |
+
"""Parallel block.
|
696 |
+
|
697 |
+
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
|
698 |
+
|
699 |
+
"""
|
700 |
+
|
701 |
+
def __init__(
|
702 |
+
self,
|
703 |
+
config: PretrainedConfig,
|
704 |
+
mixer: Optional[Dict[str, Any]] = None,
|
705 |
+
mlp: Optional[Dict[str, Any]] = None,
|
706 |
+
block_idx: Optional[int] = None,
|
707 |
+
) -> None:
|
708 |
+
super().__init__()
|
709 |
+
|
710 |
+
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
711 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
712 |
+
self.block_idx = block_idx
|
713 |
+
|
714 |
+
self.mixer = MHA(config=config, **mixer, layer_idx=block_idx)
|
715 |
+
mlp_cls = mlp.pop("mlp_cls")
|
716 |
+
if mlp_cls == "fused_mlp":
|
717 |
+
self.mlp = FusedMLP(config=config, **mlp)
|
718 |
+
else:
|
719 |
+
self.mlp = MLP(config=config, **mlp)
|
720 |
+
|
721 |
+
def forward(
|
722 |
+
self,
|
723 |
+
hidden_states: torch.FloatTensor,
|
724 |
+
past_cache: Optional[torch.FloatTensor] = None,
|
725 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
726 |
+
max_seqlen: Optional[int] = None,
|
727 |
+
) -> torch.FloatTensor:
|
728 |
+
residual = hidden_states
|
729 |
+
hidden_states = self.ln(hidden_states)
|
730 |
+
|
731 |
+
attn_outputs = self.mixer(
|
732 |
+
hidden_states,
|
733 |
+
past_cache=past_cache,
|
734 |
+
cu_seqlens=cu_seqlens,
|
735 |
+
max_seqlen=max_seqlen,
|
736 |
+
)
|
737 |
+
if isinstance(attn_outputs, tuple):
|
738 |
+
attn_outputs = attn_outputs[0]
|
739 |
+
|
740 |
+
attn_outputs = self.resid_dropout(attn_outputs)
|
741 |
+
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
742 |
+
|
743 |
+
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
744 |
+
|
745 |
+
return hidden_states
|
746 |
+
|
747 |
+
|
748 |
+
class CausalLMHead(nn.Module):
|
749 |
+
"""Causal Language Modeling head.
|
750 |
+
|
751 |
+
Reference:
|
752 |
+
Improving Language Understanding by Generative Pre-Training.
|
753 |
+
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
754 |
+
|
755 |
+
"""
|
756 |
+
|
757 |
+
def __init__(self, config: PretrainedConfig) -> None:
|
758 |
+
super().__init__()
|
759 |
+
|
760 |
+
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
761 |
+
self.linear = nn.Linear(config.n_embd, config.vocab_size)
|
762 |
+
|
763 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
764 |
+
hidden_states = self.ln(hidden_states)
|
765 |
+
logits = self.linear(hidden_states).to(torch.float32)
|
766 |
+
|
767 |
+
return logits
|
768 |
+
|
769 |
+
|
770 |
+
class CausalLMLoss(nn.Module):
|
771 |
+
"""Causal Language Modeling loss.
|
772 |
+
|
773 |
+
Reference:
|
774 |
+
Improving Language Understanding by Generative Pre-Training.
|
775 |
+
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
776 |
+
|
777 |
+
"""
|
778 |
+
|
779 |
+
def __init__(self, shift_labels: Optional[bool] = True) -> None:
|
780 |
+
super().__init__()
|
781 |
+
|
782 |
+
self.shift_labels = shift_labels
|
783 |
+
self.loss_fct = nn.CrossEntropyLoss()
|
784 |
+
|
785 |
+
def forward(
|
786 |
+
self, logits: torch.FloatTensor, labels: torch.LongTensor
|
787 |
+
) -> torch.FloatTensor:
|
788 |
+
if self.shift_labels:
|
789 |
+
logits = logits[..., :-1, :].contiguous()
|
790 |
+
labels = labels[..., 1:].contiguous()
|
791 |
+
|
792 |
+
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
793 |
+
|
794 |
+
return loss
|
795 |
+
|
796 |
+
|
797 |
+
class MixFormerSequentialPreTrainedModel(PreTrainedModel):
|
798 |
+
"""MixFormer (sequential for DeepSpeed) pre-trained model."""
|
799 |
+
|
800 |
+
config_class = MixFormerSequentialConfig
|
801 |
+
base_model_prefix = "transformer"
|
802 |
+
supports_gradient_checkpointing = True
|
803 |
+
|
804 |
+
def __init__(self, *inputs, **kwargs) -> None:
|
805 |
+
super().__init__(*inputs, **kwargs)
|
806 |
+
|
807 |
+
def prepare_inputs_for_generation(
|
808 |
+
self, input_ids, past_key_values=None, **kwargs
|
809 |
+
) -> Dict[str, Any]:
|
810 |
+
if "use_cache" in kwargs and not kwargs["use_cache"]:
|
811 |
+
return {"input_ids": input_ids}
|
812 |
+
|
813 |
+
if past_key_values is None or not (
|
814 |
+
isinstance(past_key_values, InferenceParams)
|
815 |
+
):
|
816 |
+
past_key_values = InferenceParams(
|
817 |
+
max_batch_size=input_ids.shape[0],
|
818 |
+
max_sequence_len=self.config.n_positions,
|
819 |
+
sequence_len_offset=0,
|
820 |
+
batch_size_offset=0,
|
821 |
+
fused_ft_kernel=False,
|
822 |
+
key_value_memory_dict={},
|
823 |
+
)
|
824 |
+
else:
|
825 |
+
# assume past_key_values has cached all but last token in input_ids
|
826 |
+
past_key_values.sequence_len_offset = len(input_ids[0]) - 1
|
827 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
828 |
+
|
829 |
+
return {"input_ids": input_ids, "past_key_values": past_key_values, **kwargs}
|
830 |
+
|
831 |
+
|
832 |
+
class PackedSequential(nn.Sequential):
|
833 |
+
def forward(
|
834 |
+
self,
|
835 |
+
input,
|
836 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
837 |
+
max_seqlen: Optional[int] = None,
|
838 |
+
):
|
839 |
+
for module in self:
|
840 |
+
sig = inspect.signature(module.forward)
|
841 |
+
if "cu_seqlens" in sig.parameters:
|
842 |
+
input = module(input, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
|
843 |
+
else:
|
844 |
+
input = module(input)
|
845 |
+
return input
|
846 |
+
|
847 |
+
|
848 |
+
class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
|
849 |
+
"""MixFormer (sequential for DeepSpeed) for Causal Language Modeling."""
|
850 |
+
|
851 |
+
_keys_to_ignore_on_load_missing = [""]
|
852 |
+
_keys_to_ignore_on_load_unexpected = [
|
853 |
+
r"layers\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"
|
854 |
+
]
|
855 |
+
_no_split_modules = ["ParallelBlock"]
|
856 |
+
|
857 |
+
def __init__(self, config: MixFormerSequentialConfig) -> None:
|
858 |
+
super().__init__(config)
|
859 |
+
|
860 |
+
modules = [Embedding(config)]
|
861 |
+
block_config = config.architecture
|
862 |
+
|
863 |
+
if not isinstance(block_config, list):
|
864 |
+
block_config = [block_config for _ in range(config.n_layer)]
|
865 |
+
|
866 |
+
if config.n_layer != len(block_config):
|
867 |
+
config.n_layer = len(block_config)
|
868 |
+
|
869 |
+
for block_idx, block in enumerate(block_config):
|
870 |
+
# `block_cls` with `legacy` value is for backward compatibility
|
871 |
+
# `path` key is for backward compatibility
|
872 |
+
block = copy.deepcopy(block) or {"block_cls": "parallel"}
|
873 |
+
# block_cls = block.pop("path", None) or block.pop("block_cls", None)
|
874 |
+
|
875 |
+
block["block_idx"] = block_idx
|
876 |
+
modules.append(ParallelBlock(config, **block))
|
877 |
+
|
878 |
+
modules.append(CausalLMHead(config))
|
879 |
+
|
880 |
+
self.layers = PackedSequential(*modules)
|
881 |
+
self.loss = CausalLMLoss()
|
882 |
+
|
883 |
+
self.post_init()
|
884 |
+
|
885 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
886 |
+
return self.layers[0].wte
|
887 |
+
|
888 |
+
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
889 |
+
self.layers[0].wte = new_embeddings
|
890 |
+
|
891 |
+
def get_output_embeddings(self) -> nn.Linear:
|
892 |
+
return self.layers[-1].linear
|
893 |
+
|
894 |
+
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
895 |
+
self.layers[-1].linear = new_embeddings
|
896 |
+
|
897 |
+
def forward(
|
898 |
+
self,
|
899 |
+
input_ids: torch.LongTensor,
|
900 |
+
labels: Optional[torch.LongTensor] = None,
|
901 |
+
past_key_values: Optional[torch.FloatTensor] = None,
|
902 |
+
position_ids: Optional[torch.LongTensor] = None,
|
903 |
+
**kwargs,
|
904 |
+
) -> CausalLMOutputWithPast:
|
905 |
+
cu_seqlens: Optional[torch.LongTensor] = None
|
906 |
+
max_seqlen: Optional[int] = None
|
907 |
+
if position_ids is not None:
|
908 |
+
batch_size, seq_length = input_ids.shape
|
909 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
910 |
+
cu_seqlens, max_seqlen = get_cu_seqlens_from_pos_ids(position_ids)
|
911 |
+
cu_seqlens = cu_seqlens.squeeze()
|
912 |
+
|
913 |
+
if not past_key_values:
|
914 |
+
lm_logits = self.layers(
|
915 |
+
input_ids, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
|
916 |
+
)
|
917 |
+
else:
|
918 |
+
hidden_layer = self.layers[0](input_ids)
|
919 |
+
for module in self.layers[1:-1]:
|
920 |
+
hidden_layer = module(
|
921 |
+
hidden_layer,
|
922 |
+
past_cache=past_key_values,
|
923 |
+
cu_seqlens=cu_seqlens,
|
924 |
+
max_seqlen=max_seqlen,
|
925 |
+
)
|
926 |
+
lm_logits = self.layers[-1](hidden_layer)
|
927 |
+
|
928 |
+
loss = None
|
929 |
+
if labels is not None:
|
930 |
+
loss = self.loss(lm_logits, labels)
|
931 |
+
|
932 |
+
return CausalLMOutputWithPast(
|
933 |
+
loss=loss, logits=lm_logits, past_key_values=past_key_values
|
934 |
+
)
|
src/axolotl/utils/models.py
CHANGED
@@ -221,6 +221,17 @@ def load_model(
|
|
221 |
# device=cfg.device,
|
222 |
# )
|
223 |
# model.train() # sets to train instead of eval mode
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
elif model_type and not cfg.trust_remote_code:
|
225 |
if cfg.gptq:
|
226 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
221 |
# device=cfg.device,
|
222 |
# )
|
223 |
# model.train() # sets to train instead of eval mode
|
224 |
+
elif model_type == "MixFormerSequentialForCausalLM":
|
225 |
+
from axolotl.models.phi import MixFormerSequentialForCausalLM
|
226 |
+
|
227 |
+
model = MixFormerSequentialForCausalLM.from_pretrained(
|
228 |
+
base_model,
|
229 |
+
device_map=cfg.device_map,
|
230 |
+
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
|
231 |
+
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
|
232 |
+
torch_dtype=cfg.torch_dtype,
|
233 |
+
**model_kwargs,
|
234 |
+
)
|
235 |
elif model_type and not cfg.trust_remote_code:
|
236 |
if cfg.gptq:
|
237 |
model = AutoModelForCausalLM.from_pretrained(
|
tests/e2e/.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
last_run_prepared
|
tests/e2e/test_lora_llama.py
CHANGED
@@ -7,39 +7,23 @@ import os
|
|
7 |
import tempfile
|
8 |
import unittest
|
9 |
|
|
|
10 |
from axolotl.common.cli import TrainerCliArgs
|
11 |
-
from axolotl.train import
|
12 |
from axolotl.utils.config import normalize_config
|
13 |
-
from axolotl.utils.data import prepare_dataset
|
14 |
from axolotl.utils.dict import DictDefault
|
15 |
-
from axolotl.utils.models import load_tokenizer
|
16 |
|
17 |
LOG = logging.getLogger("axolotl.tests.e2e")
|
18 |
os.environ["WANDB_DISABLED"] = "true"
|
19 |
|
20 |
|
21 |
-
def load_datasets(
|
22 |
-
*,
|
23 |
-
cfg: DictDefault,
|
24 |
-
cli_args: TrainerCliArgs, # pylint:disable=unused-argument
|
25 |
-
) -> TrainDatasetMeta:
|
26 |
-
tokenizer = load_tokenizer(cfg)
|
27 |
-
|
28 |
-
train_dataset, eval_dataset, total_num_steps = prepare_dataset(cfg, tokenizer)
|
29 |
-
|
30 |
-
return TrainDatasetMeta(
|
31 |
-
train_dataset=train_dataset,
|
32 |
-
eval_dataset=eval_dataset,
|
33 |
-
total_num_steps=total_num_steps,
|
34 |
-
)
|
35 |
-
|
36 |
-
|
37 |
class TestLoraLlama(unittest.TestCase):
|
38 |
"""
|
39 |
Test case for Llama models using LoRA
|
40 |
"""
|
41 |
|
42 |
def test_lora(self):
|
|
|
43 |
cfg = DictDefault(
|
44 |
{
|
45 |
"base_model": "JackFram/llama-68m",
|
@@ -80,6 +64,7 @@ class TestLoraLlama(unittest.TestCase):
|
|
80 |
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
81 |
|
82 |
def test_lora_packing(self):
|
|
|
83 |
cfg = DictDefault(
|
84 |
{
|
85 |
"base_model": "JackFram/llama-68m",
|
|
|
7 |
import tempfile
|
8 |
import unittest
|
9 |
|
10 |
+
from axolotl.cli import load_datasets
|
11 |
from axolotl.common.cli import TrainerCliArgs
|
12 |
+
from axolotl.train import train
|
13 |
from axolotl.utils.config import normalize_config
|
|
|
14 |
from axolotl.utils.dict import DictDefault
|
|
|
15 |
|
16 |
LOG = logging.getLogger("axolotl.tests.e2e")
|
17 |
os.environ["WANDB_DISABLED"] = "true"
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
class TestLoraLlama(unittest.TestCase):
|
21 |
"""
|
22 |
Test case for Llama models using LoRA
|
23 |
"""
|
24 |
|
25 |
def test_lora(self):
|
26 |
+
# pylint: disable=duplicate-code
|
27 |
cfg = DictDefault(
|
28 |
{
|
29 |
"base_model": "JackFram/llama-68m",
|
|
|
64 |
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
65 |
|
66 |
def test_lora_packing(self):
|
67 |
+
# pylint: disable=duplicate-code
|
68 |
cfg = DictDefault(
|
69 |
{
|
70 |
"base_model": "JackFram/llama-68m",
|
tests/e2e/test_phi.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
E2E tests for lora llama
|
3 |
+
"""
|
4 |
+
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import tempfile
|
8 |
+
import unittest
|
9 |
+
|
10 |
+
from axolotl.cli import load_datasets
|
11 |
+
from axolotl.common.cli import TrainerCliArgs
|
12 |
+
from axolotl.train import train
|
13 |
+
from axolotl.utils.config import normalize_config
|
14 |
+
from axolotl.utils.dict import DictDefault
|
15 |
+
|
16 |
+
LOG = logging.getLogger("axolotl.tests.e2e")
|
17 |
+
os.environ["WANDB_DISABLED"] = "true"
|
18 |
+
|
19 |
+
|
20 |
+
class TestPhi(unittest.TestCase):
|
21 |
+
"""
|
22 |
+
Test case for Llama models using LoRA
|
23 |
+
"""
|
24 |
+
|
25 |
+
def test_ft(self):
|
26 |
+
# pylint: disable=duplicate-code
|
27 |
+
cfg = DictDefault(
|
28 |
+
{
|
29 |
+
"base_model": "microsoft/phi-1_5",
|
30 |
+
"base_model_config": "microsoft/phi-1_5",
|
31 |
+
"trust_remote_code": True,
|
32 |
+
"model_type": "MixFormerSequentialForCausalLM",
|
33 |
+
"tokenizer_type": "AutoTokenizer",
|
34 |
+
"sequence_len": 2048,
|
35 |
+
"sample_packing": False,
|
36 |
+
"load_in_8bit": True,
|
37 |
+
"adapter": None,
|
38 |
+
"val_set_size": 0.1,
|
39 |
+
"special_tokens": {
|
40 |
+
"unk_token": "<|endoftext|>",
|
41 |
+
"bos_token": "<|endoftext|>",
|
42 |
+
"eos_token": "<|endoftext|>",
|
43 |
+
"pad_token": "<|endoftext|>",
|
44 |
+
},
|
45 |
+
"datasets": [
|
46 |
+
{
|
47 |
+
"path": "mhenrichsen/alpaca_2k_test",
|
48 |
+
"type": "alpaca",
|
49 |
+
},
|
50 |
+
],
|
51 |
+
"dataset_shard_num": 10,
|
52 |
+
"dataset_shard_idx": 0,
|
53 |
+
"num_epochs": 1,
|
54 |
+
"micro_batch_size": 1,
|
55 |
+
"gradient_accumulation_steps": 1,
|
56 |
+
"output_dir": tempfile.mkdtemp(),
|
57 |
+
"learning_rate": 0.00001,
|
58 |
+
"optimizer": "adamw_torch",
|
59 |
+
"lr_scheduler": "cosine",
|
60 |
+
}
|
61 |
+
)
|
62 |
+
normalize_config(cfg)
|
63 |
+
cli_args = TrainerCliArgs()
|
64 |
+
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
65 |
+
|
66 |
+
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
67 |
+
|
68 |
+
def test_ft_packed(self):
|
69 |
+
# pylint: disable=duplicate-code
|
70 |
+
cfg = DictDefault(
|
71 |
+
{
|
72 |
+
"base_model": "microsoft/phi-1_5",
|
73 |
+
"base_model_config": "microsoft/phi-1_5",
|
74 |
+
"trust_remote_code": True,
|
75 |
+
"model_type": "MixFormerSequentialForCausalLM",
|
76 |
+
"tokenizer_type": "AutoTokenizer",
|
77 |
+
"sequence_len": 2048,
|
78 |
+
"sample_packing": True,
|
79 |
+
"load_in_8bit": True,
|
80 |
+
"adapter": None,
|
81 |
+
"val_set_size": 0.1,
|
82 |
+
"special_tokens": {
|
83 |
+
"unk_token": "<|endoftext|>",
|
84 |
+
"bos_token": "<|endoftext|>",
|
85 |
+
"eos_token": "<|endoftext|>",
|
86 |
+
"pad_token": "<|endoftext|>",
|
87 |
+
},
|
88 |
+
"datasets": [
|
89 |
+
{
|
90 |
+
"path": "mhenrichsen/alpaca_2k_test",
|
91 |
+
"type": "alpaca",
|
92 |
+
},
|
93 |
+
],
|
94 |
+
"dataset_shard_num": 10,
|
95 |
+
"dataset_shard_idx": 0,
|
96 |
+
"num_epochs": 1,
|
97 |
+
"micro_batch_size": 1,
|
98 |
+
"gradient_accumulation_steps": 1,
|
99 |
+
"output_dir": tempfile.mkdtemp(),
|
100 |
+
"learning_rate": 0.00001,
|
101 |
+
"optimizer": "adamw_torch",
|
102 |
+
"lr_scheduler": "cosine",
|
103 |
+
}
|
104 |
+
)
|
105 |
+
normalize_config(cfg)
|
106 |
+
cli_args = TrainerCliArgs()
|
107 |
+
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
108 |
+
|
109 |
+
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|