base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 | |
model_type: LlamaForCausalLM | |
tokenizer_type: LlamaTokenizer | |
load_in_8bit: false | |
load_in_4bit: false | |
strict: false | |
max_steps: 200 | |
pretraining_dataset: | |
path: c4 | |
name: en | |
type: pretrain | |
dataset_prepared_path: | |
val_set_size: 0.0 | |
output_dir: ./outputs/model-out | |
sequence_len: 2048 | |
sample_packing: true | |
wandb_project: | |
wandb_entity: | |
wandb_watch: | |
wandb_name: | |
wandb_log_model: | |
gradient_accumulation_steps: 4 | |
micro_batch_size: 2 | |
num_epochs: 4 | |
optimizer: adamw_bnb_8bit | |
lr_scheduler: cosine | |
learning_rate: 0.0002 | |
train_on_inputs: false | |
group_by_length: false | |
bf16: auto | |
fp16: | |
tf32: false | |
gradient_checkpointing: true | |
early_stopping_patience: | |
resume_from_checkpoint: | |
local_rank: | |
logging_steps: 1 | |
xformers_attention: | |
flash_attention: true | |
warmup_steps: 10 | |
evals_per_epoch: | |
eval_table_size: | |
saves_per_epoch: 1 | |
debug: | |
deepspeed: | |
weight_decay: 0.0 | |
fsdp: | |
fsdp_config: | |
special_tokens: | |