qwerrwe / src /axolotl /utils /trainer.py
winglian's picture
fixes to make qlora actually work
34c99f9
raw
history blame
8.44 kB
import importlib
import math
import os
import sys
from pathlib import Path
import bitsandbytes as bnb
import torch.cuda
import transformers
from torch import nn
from torch.optim.lr_scheduler import OneCycleLR
from transformers import EarlyStoppingCallback, Trainer
from transformers.trainer_pt_utils import get_parameter_names
from axolotl.utils.schedulers import InterpolatingLogScheduler
from axolotl.utils.callbacks import SavePeftModelCallback
class OneCycleLRSchedulerTrainer(Trainer):
def create_scheduler(
self, num_training_steps: int, optimizer: torch.optim.Optimizer = None
):
optimizer = self.optimizer if optimizer is None else optimizer
num_warmup_steps = self.args.get_warmup_steps(num_training_steps)
num_training_steps = num_training_steps
pct_start = num_warmup_steps / num_training_steps
self.lr_scheduler = OneCycleLR(
optimizer,
max_lr=self.args.learning_rate,
total_steps=num_training_steps,
pct_start=pct_start,
div_factor=6,
)
return self.lr_scheduler
def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
total_num_steps = int(
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
)
warmup_steps = (
cfg.warmup_steps
if cfg.warmup_steps is not None
else min(int(0.03 * total_num_steps), 100)
)
logging_steps = (
cfg.logging_steps
if cfg.logging_steps is not None
else max(min(int(0.005 * total_num_steps), 10), 1)
)
save_steps = cfg.save_steps
eval_steps = cfg.eval_steps
training_arguments_kwargs = {}
if cfg.bf16 == "full":
training_arguments_kwargs["bf16_full_eval"] = True
else:
training_arguments_kwargs["bf16"] = cfg.bf16
training_arguments_kwargs["fp16"] = True if cfg.fp16 and not cfg.bf16 else False
training_arguments_kwargs["tf32"] = cfg.tf32
training_arguments_kwargs["warmup_steps"] = warmup_steps
training_arguments_kwargs["logging_steps"] = logging_steps
if cfg.gradient_checkpointing is not None:
if cfg.load_4bit:
from alpaca_lora_4bit.gradient_checkpointing import (
apply_gradient_checkpointing,
)
gradient_checkpointing_ratio = (
cfg.gradient_checkpointing_ratio
if cfg.gradient_checkpointing_ratio
else 1.0
)
apply_gradient_checkpointing(
model, checkpoint_ratio=gradient_checkpointing_ratio
)
else:
training_arguments_kwargs[
"gradient_checkpointing"
] = cfg.gradient_checkpointing
if cfg.fsdp:
training_arguments_kwargs["fsdp"] = cfg.fsdp
if cfg.fsdp_config:
training_arguments_kwargs["fsdp_config"] = dict(cfg.fsdp_config)
# deepspeed
if (
os.environ.get("ACCELERATE_USE_DEEPSPEED") == "true"
and torch.cuda.device_count() > 1
):
if cfg.deepspeed:
training_arguments_kwargs["deepspeed"] = cfg.deepspeed
else:
# make a guess here
# TODO search Path("./") for one
training_arguments_kwargs["deepspeed"] = "./ds_config.json"
training_args = transformers.TrainingArguments(
per_device_train_batch_size=cfg.micro_batch_size,
per_device_eval_batch_size=cfg.eval_batch_size
if cfg.eval_batch_size is not None
else cfg.micro_batch_size,
gradient_accumulation_steps=cfg.gradient_accumulation_steps,
eval_accumulation_steps=cfg.gradient_accumulation_steps,
num_train_epochs=cfg.num_epochs,
learning_rate=cfg.learning_rate,
evaluation_strategy="steps" if cfg.val_set_size > 0 else "no",
save_strategy="steps" if save_steps else "epoch",
eval_steps=eval_steps if cfg.val_set_size > 0 else None,
save_steps=save_steps,
output_dir=cfg.output_dir,
save_total_limit=3,
load_best_model_at_end=True
if cfg.val_set_size > 0
and save_steps is not None
and save_steps % eval_steps == 0
and cfg.load_in_8bit is not True
else False,
ddp_find_unused_parameters=False if cfg.ddp else None,
group_by_length=cfg.group_by_length,
report_to="wandb" if cfg.use_wandb else None,
run_name=cfg.wandb_run_id if cfg.use_wandb else None,
optim=cfg.optimizer if cfg.optimizer else "adamw_hf",
lr_scheduler_type=cfg.lr_scheduler
if cfg.lr_scheduler and cfg.lr_scheduler not in ("one_cycle", "log_sweep")
else "cosine",
weight_decay=cfg.weight_decay if cfg.weight_decay is not None else 0.0,
**training_arguments_kwargs,
)
trainer_kwargs = {}
if cfg.optimizer == "adamw_anyprecision":
if Path(cfg.torchdistx_path).exists():
sys.path.append(cfg.torchdistx_path)
importlib.import_module("torchdistx")
if (
cfg.optimizer == "adamw_bnb_8bit"
and not cfg.load_4bit
and not "deepspeed" in training_arguments_kwargs
and not cfg.fsdp
):
decay_parameters = get_parameter_names(model, [nn.LayerNorm])
decay_parameters = [name for name in decay_parameters if "bias" not in name]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in model.named_parameters()
if (n in decay_parameters and p.requires_grad)
],
"weight_decay": training_args.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if (n not in decay_parameters and p.requires_grad)
],
"weight_decay": 0.0,
},
]
optimizer = bnb.optim.Adam8bit(
optimizer_grouped_parameters,
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
lr=training_args.learning_rate,
)
if cfg.lr_scheduler == "one_cycle":
lr_scheduler_kwargs = (
cfg.lr_scheduler_kwargs if cfg.lr_scheduler_kwargs else {}
)
lr_scheduler = OneCycleLR(
optimizer,
cfg.learning_rate,
total_steps=total_num_steps,
epochs=cfg.num_epochs,
div_factor=cfg.lr_div_factor if cfg.lr_div_factor else 6,
**lr_scheduler_kwargs,
)
elif cfg.lr_scheduler == "log_sweep":
lr_scheduler = InterpolatingLogScheduler(
optimizer,
cfg.warmup_steps,
cfg.log_sweep_min_lr if cfg.log_sweep_min_lr else 1e-10,
cfg.log_sweep_max_lr if cfg.log_sweep_max_lr else 10,
)
else:
lr_scheduler = transformers.get_cosine_schedule_with_warmup(
optimizer,
training_args.warmup_steps,
total_num_steps,
)
trainer_kwargs["optimizers"] = (optimizer, lr_scheduler)
callbacks = []
# TODO on_save callback to sync checkpoints to GCP/AWS in background
if cfg.early_stopping_patience:
early_stop_cb = EarlyStoppingCallback(
cfg.early_stopping_patience,
)
callbacks.append(early_stop_cb)
if cfg.local_rank == 0 and cfg.adapter in ["lora", "qlora"]: # only save in rank 0
callbacks.append(SavePeftModelCallback)
data_collator_kwargs = {
"padding": True,
}
if cfg.collator_pad_to_longest:
data_collator_kwargs["padding"] = "longest"
else:
data_collator_kwargs["pad_to_multiple_of"] = 8
trainer_cls = (
OneCycleLRSchedulerTrainer
if cfg.lr_scheduler == "one_cycle" and cfg.fsdp
else transformers.Trainer
)
trainer = trainer_cls(
model=model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
args=training_args,
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer,
return_tensors="pt",
**data_collator_kwargs,
),
callbacks=callbacks,
**trainer_kwargs,
)
return trainer