|
import copy |
|
import dataclasses |
|
from enum import auto, Enum |
|
from typing import List, Tuple, Any, Union |
|
|
|
IGNORE_TOKEN_ID = -100 |
|
|
|
|
|
class AlpacaPrompter: |
|
prompt_input = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" |
|
prompt_no_input = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:\n" |
|
response_split = "### Response:" |
|
|
|
def build_prompt( |
|
self, |
|
instruction: str, |
|
input: Union[None, str] = None, |
|
output: Union[None, str] = None, |
|
) -> str: |
|
|
|
|
|
if input: |
|
res = self.prompt_input.format(instruction=instruction, input=input) |
|
else: |
|
res = self.prompt_no_input.format(instruction=instruction) |
|
if output: |
|
res = f"{res}{output}" |
|
return res |
|
|
|
def get_response(self, output: str) -> str: |
|
return output.split(self.response_split)[1].strip() |
|
|
|
|
|
class JeopardyPrompter(AlpacaPrompter): |
|
prompt_input = "Below is a Jeopardy clue paired with input providing the category of the clue. Write a concise response that best answers tbe clue given the category.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" |
|
|
|
|
|
class GPTeacherPrompter(AlpacaPrompter): |
|
... |
|
|
|
|
|
class NomicGPT4AllPrompter(AlpacaPrompter): |
|
... |
|
|
|
|
|
class ReflectAlpacaPrompter: |
|
prompt_input = "Below is an instruction that describes a task, paired with an input that provides further context. You, the Assistant, should generate a response as if it were an abstract for an academic or technical paper on the query along with a methodology. Then generate an Agent Reflection where you create a long form response as if from subject matter expert, be verbose, diligent, and creative in your application of knowledge, apply it through the lens of the response generated by the assistant. Look for flawed reasoning, faulty logic, or other mistakes in the method. Finally, generate a final response and method for the user with the Assistant abstract and Reflection analysis as augmentations to the generation\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" |
|
prompt_no_input = "Below is an instruction that describes a task. You, the Assistant, should generate a response as if it were an abstract for an academic or technical paper on the query along with a methodology. Then generate an Agent Reflection where you create a long form response as if from subject matter expert, be verbose, diligent, and creative in your application of knowledge, apply it through the lens of the response generated by the assistant. Look for flawed reasoning, faulty logic, or other mistakes in the method. Finally, generate a final response and method for the user with the Assistant abstract and Reflection analysis as augmentations to the generation\n\n### Instruction:\n{instruction}\n\n### Response:\n" |
|
agent_label = "{output}\n\n### Agent Reflection:\n{reflection}\n\n### Final Response:\n{corrected}" |
|
response_split = "### Response:" |
|
|
|
def build_prompt( |
|
self, |
|
instruction: str, |
|
input: Union[None, str] = None, |
|
output: Union[None, str] = None, |
|
reflection: Union[None, str] = None, |
|
corrected: Union[None, str] = None, |
|
) -> str: |
|
|
|
|
|
if input: |
|
res = self.prompt_input.format(instruction=instruction, input=input) |
|
else: |
|
res = self.prompt_no_input.format(instruction=instruction) |
|
if output and reflection and corrected: |
|
label = self.agent_label.format(output=output, reflection=reflection, corrected=corrected) |
|
res = f"{res}{label}" |
|
return res |
|
|
|
def get_response(self, output: str) -> str: |
|
return output.split(self.response_split)[1].strip() |
|
|
|
|
|
class SeparatorStyle(Enum): |
|
"""Different separator style.""" |
|
|
|
SINGLE = auto() |
|
TWO = auto() |
|
DOLLY = auto() |
|
|
|
|
|
|
|
@dataclasses.dataclass |
|
class Conversation: |
|
"""A class that keeps all conversation history.""" |
|
|
|
system: str |
|
roles: List[str] |
|
messages: List[List[str]] |
|
offset: int |
|
sep_style: SeparatorStyle = SeparatorStyle.SINGLE |
|
sep: str = "###" |
|
sep2: str = None |
|
|
|
def get_prompt(self): |
|
seps = [self.sep, self.sep2] |
|
ret = self.system + seps[0] |
|
for i, (role, message) in enumerate(self.messages): |
|
if message: |
|
ret += role + ": " + message + seps[i % 2] |
|
else: |
|
ret += role + ":" |
|
return ret |
|
|
|
def copy(self): |
|
return Conversation( |
|
system=self.system, |
|
roles=self.roles, |
|
messages=[[x, y] for x, y in self.messages], |
|
offset=self.offset, |
|
sep_style=self.sep_style, |
|
sep=self.sep, |
|
sep2=self.sep2, |
|
) |
|
|
|
def append_message(self, role, message): |
|
self.messages.append([role, message]) |
|
|
|
|
|
conv_vicuna_v1_1 = Conversation( |
|
system="A chat between a curious user and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the user's questions.", |
|
roles=["USER", "ASSISTANT"], |
|
messages=[], |
|
offset=0, |
|
sep_style=SeparatorStyle.TWO, |
|
sep=" ", |
|
sep2="</s>", |
|
) |
|
|
|
|
|
class ShareGPTPrompter: |
|
def build_prompt(self, source, tokenizer, sequence_len=2048): |
|
|
|
if source[0]["from"] == "system": |
|
source.pop(0) |
|
|
|
if len(source) < 2: |
|
|
|
|
|
raise IndexError |
|
|
|
conv = conv_vicuna_v1_1.copy() |
|
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} |
|
|
|
try: |
|
|
|
if ( |
|
source[0]["from"] not in roles |
|
or roles[source[0]["from"]] != conv.roles[0] |
|
): |
|
|
|
source = source[1:] |
|
except IndexError as e: |
|
|
|
raise e |
|
|
|
conv.messages = [] |
|
for j, sentence in enumerate(source): |
|
role = roles[sentence["from"]] |
|
assert role == conv.roles[j % 2] |
|
conv.append_message(role, sentence["value"]) |
|
|
|
conversation = conv.get_prompt() |
|
|
|
|
|
tokenized_result = tokenizer( |
|
conversation, |
|
truncation=True, |
|
max_length=sequence_len, |
|
padding=False, |
|
return_tensors=None, |
|
) |
|
target = copy.deepcopy(tokenized_result["input_ids"]) |
|
|
|
|
|
sep = conv.sep + conv.roles[1] + ": " |
|
|
|
rounds = conversation.split(conv.sep2) |
|
rounds = [r + conv.sep2 for r in rounds] |
|
cur_len = 1 |
|
target[0] = IGNORE_TOKEN_ID |
|
for i, rou in enumerate(rounds): |
|
if rou == "": |
|
break |
|
|
|
parts = rou.split(sep) |
|
if len(parts) != 2: |
|
break |
|
parts[0] += sep |
|
round_len = len(tokenizer(rou)["input_ids"]) - 1 |
|
|
|
instruction_len = len(tokenizer(parts[0].strip())["input_ids"]) - 1 |
|
target[cur_len : cur_len + instruction_len] = [ |
|
IGNORE_TOKEN_ID |
|
] * instruction_len |
|
|
|
cur_len += round_len |
|
if cur_len >= sequence_len: |
|
break |
|
|
|
|
|
target = target[:len(tokenized_result["input_ids"])] |
|
|
|
|
|
attention_mask = [ |
|
1 if x != tokenizer.pad_token_id else 0 |
|
for x in tokenized_result["input_ids"] |
|
] |
|
|
|
|
|
return dict( |
|
input_ids=tokenized_result["input_ids"], |
|
labels=target, |
|
attention_mask=attention_mask, |
|
) |
|
|