|
"""Module for testing prompt tokenizers.""" |
|
import json |
|
import logging |
|
import unittest |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import pytest |
|
from transformers import AutoTokenizer, LlamaTokenizer |
|
|
|
from axolotl.prompt_strategies.alpaca_chat import NoSystemPrompter |
|
from axolotl.prompt_strategies.alpaca_w_system import ( |
|
InstructionWSystemPromptTokenizingStrategy, |
|
SystemDataPrompter, |
|
) |
|
from axolotl.prompt_strategies.llama2_chat import ( |
|
Llama2ChatPrompter, |
|
LLama2ChatTokenizingStrategy, |
|
) |
|
from axolotl.prompt_tokenizers import ( |
|
AlpacaPromptTokenizingStrategy, |
|
ShareGPTPromptTokenizingStrategy, |
|
) |
|
from axolotl.prompters import AlpacaPrompter, PromptStyle, ShareGPTPrompter |
|
|
|
LOG = logging.getLogger("axolotl") |
|
|
|
|
|
class TestPromptTokenizationStrategies(unittest.TestCase): |
|
""" |
|
Test class for prompt tokenization strategies. |
|
""" |
|
|
|
_caplog: Optional[pytest.LogCaptureFixture] = None |
|
|
|
@pytest.fixture(autouse=True) |
|
def inject_fixtures(self, caplog): |
|
self._caplog = caplog |
|
|
|
def setUp(self) -> None: |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b") |
|
self.tokenizer.add_special_tokens( |
|
{ |
|
"bos_token": "<s>", |
|
"eos_token": "</s>", |
|
"unk_token": "<unk>", |
|
} |
|
) |
|
|
|
def test_sharegpt_integration(self): |
|
with open( |
|
Path(__file__).parent / "fixtures/conversation.json", encoding="utf-8" |
|
) as fin: |
|
data = fin.read() |
|
conversation = json.loads(data) |
|
with open( |
|
Path(__file__).parent / "fixtures/conversation.tokenized.json", |
|
encoding="utf-8", |
|
) as fin: |
|
data = fin.read() |
|
tokenized_conversation = json.loads(data) |
|
prompter = ShareGPTPrompter("chat") |
|
strat = ShareGPTPromptTokenizingStrategy( |
|
prompter, |
|
self.tokenizer, |
|
False, |
|
2048, |
|
) |
|
example = strat.tokenize_prompt(conversation) |
|
for fields in ["input_ids", "attention_mask", "labels"]: |
|
self.assertEqual(len(example[fields]), len(tokenized_conversation[fields])) |
|
self.assertEqual(example[fields], tokenized_conversation[fields]) |
|
|
|
def test_sharegpt_warnings_integration(self): |
|
with open( |
|
Path(__file__).parent / "fixtures/conversation.missingturns.json", |
|
encoding="utf-8", |
|
) as fin: |
|
data = fin.read() |
|
conversation = json.loads(data) |
|
prompter = ShareGPTPrompter("chat") |
|
strat = ShareGPTPromptTokenizingStrategy( |
|
prompter, |
|
self.tokenizer, |
|
False, |
|
2048, |
|
) |
|
with self._caplog.at_level(logging.WARNING): |
|
strat.tokenize_prompt(conversation) |
|
assert "assistant turn has empty text" in self._caplog.records[1].message |
|
|
|
def test_no_sys_prompt(self): |
|
""" |
|
tests the interface between the user and assistant parts |
|
""" |
|
prompter = NoSystemPrompter() |
|
|
|
strat = AlpacaPromptTokenizingStrategy( |
|
prompter, |
|
self.tokenizer, |
|
False, |
|
2048, |
|
) |
|
sample = { |
|
"instruction": "hello cruel. lorem ipsum dolor sit amet.", |
|
"output": "world!", |
|
} |
|
example = strat.tokenize_prompt(sample) |
|
world_idx = example["input_ids"].index(3186) |
|
assert example["labels"][world_idx] == 3186 |
|
assert example["labels"][world_idx - 1] == -100 |
|
|
|
def test_alpaca(self): |
|
""" |
|
tests the interface between the user and assistant parts |
|
""" |
|
|
|
prompter = AlpacaPrompter() |
|
strat = AlpacaPromptTokenizingStrategy( |
|
prompter, |
|
self.tokenizer, |
|
False, |
|
2048, |
|
) |
|
sample = {"instruction": "hello!", "output": "Hi! How can I help?"} |
|
example = strat.tokenize_prompt(sample) |
|
world_idx = example["input_ids"].index(6324) |
|
assert example["labels"][world_idx] == 6324 |
|
assert example["labels"][world_idx - 1] == -100 |
|
|
|
|
|
class InstructionWSystemPromptTokenizingStrategyTest(unittest.TestCase): |
|
""" |
|
Test class for prompt tokenization strategies with sys prompt from the dataset |
|
""" |
|
|
|
def setUp(self) -> None: |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b") |
|
self.tokenizer.add_special_tokens( |
|
{ |
|
"bos_token": "<s>", |
|
"eos_token": "</s>", |
|
"unk_token": "<unk>", |
|
} |
|
) |
|
|
|
def test_system_alpaca(self): |
|
prompter = SystemDataPrompter(PromptStyle.CHAT.value) |
|
strat = InstructionWSystemPromptTokenizingStrategy( |
|
prompter, |
|
self.tokenizer, |
|
False, |
|
2048, |
|
) |
|
sample = { |
|
"system": "use cot", |
|
"instruction": "hello!", |
|
"output": "Hi! How can I help?", |
|
} |
|
example = strat.tokenize_prompt(sample) |
|
assert example["input_ids"][0:5] == [ |
|
1, |
|
28962, |
|
1254, |
|
12665, |
|
29901, |
|
] |
|
assert example["input_ids"][5:7] == [671, 20118] |
|
assert example["input_ids"][8] == 11889 |
|
|
|
|
|
class Llama2ChatTokenizationTest(unittest.TestCase): |
|
""" |
|
Test class for prompt tokenization strategies with sys prompt from the dataset |
|
""" |
|
|
|
def setUp(self) -> None: |
|
|
|
self.tokenizer = LlamaTokenizer.from_pretrained("NousResearch/Llama-2-7b-hf") |
|
|
|
|
|
def test_llama2_chat_integration(self): |
|
with open( |
|
Path(__file__).parent / "fixtures/conversation.json", encoding="utf-8" |
|
) as fin: |
|
data = fin.read() |
|
conversation = json.loads(data) |
|
with open( |
|
Path(__file__).parent / "fixtures/conversation.tokenized_llama2chat.json", |
|
encoding="utf-8", |
|
) as fin: |
|
data = fin.read() |
|
tokenized_conversation = json.loads(data) |
|
prompter = Llama2ChatPrompter() |
|
strat = LLama2ChatTokenizingStrategy( |
|
prompter, |
|
self.tokenizer, |
|
False, |
|
4096, |
|
) |
|
example = strat.tokenize_prompt(conversation) |
|
for fields in ["input_ids", "attention_mask", "labels"]: |
|
self.assertEqual(len(example[fields]), len(tokenized_conversation[fields])) |
|
self.assertEqual(example[fields], tokenized_conversation[fields]) |
|
|
|
def compare_with_transformers_integration(self): |
|
|
|
from transformers.models.llama.tokenization_llama import B_SYS, E_SYS |
|
from transformers.pipelines.conversational import Conversation |
|
|
|
|
|
|
|
|
|
|
|
DEFAULT_SYSTEM_PROMPT = """\ |
|
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. |
|
|
|
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""" |
|
with open( |
|
Path(__file__).parent / "fixtures/conversation.json", encoding="utf-8" |
|
) as fin: |
|
data = fin.read() |
|
conversation = json.loads(data) |
|
with open( |
|
Path(__file__).parent / "fixtures/conversation.tokenized_llama2chat.json", |
|
encoding="utf-8", |
|
) as fin: |
|
data = fin.read() |
|
tokenized_conversation = json.loads(data) |
|
|
|
user_input = [] |
|
answers = [] |
|
for msg in conversation["conversations"]: |
|
if msg["from"] == "human": |
|
user_input.append(msg["value"]) |
|
else: |
|
answers.append(msg["value"]) |
|
hf_conf = Conversation( |
|
text=user_input[-1], |
|
past_user_inputs=[B_SYS + DEFAULT_SYSTEM_PROMPT + E_SYS + user_input[0]] |
|
+ user_input[1:-1], |
|
generated_responses=answers, |
|
) |
|
|
|
hf_tokens = self.tokenizer._build_conversation_input_ids(hf_conf) |
|
|
|
self.assertEqual( |
|
hf_tokens, tokenized_conversation["input_ids"][: len(hf_tokens)] |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
unittest.main() |
|
|