|
import importlib |
|
import logging |
|
import os |
|
import random |
|
import signal |
|
import sys |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import fire |
|
import torch |
|
import yaml |
|
from attrdict import AttrDefault |
|
|
|
|
|
from axolotl.utils.tokenization import check_dataset_labels |
|
from axolotl.utils.validation import validate_config |
|
|
|
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) |
|
src_dir = os.path.join(project_root, "src") |
|
sys.path.insert(0, src_dir) |
|
|
|
from axolotl.utils.data import load_prepare_datasets |
|
from axolotl.utils.models import load_model, load_tokenizer |
|
from axolotl.utils.trainer import setup_trainer |
|
from axolotl.utils.wandb import setup_wandb_env_vars |
|
|
|
logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO")) |
|
DEFAULT_DATASET_PREPARED_PATH = "last_run_prepared" |
|
|
|
|
|
def choose_device(cfg): |
|
def get_device(): |
|
if torch.cuda.is_available(): |
|
return f"cuda:{cfg.local_rank}" |
|
else: |
|
try: |
|
if torch.backends.mps.is_available(): |
|
return "mps" |
|
except: |
|
return "cpu" |
|
|
|
cfg.device = get_device() |
|
if cfg.device == "cuda": |
|
cfg.device_map = {"": cfg.local_rank} |
|
else: |
|
cfg.device_map = {"": cfg.device} |
|
|
|
|
|
def get_multi_line_input() -> Optional[str]: |
|
print("Give me an instruction (Ctrl + D to finish): ") |
|
instruction = "" |
|
for line in sys.stdin: |
|
instruction += line |
|
|
|
return instruction |
|
|
|
|
|
def do_inference(cfg, model, tokenizer, prompter="AlpacaPrompter"): |
|
tokenizer.add_special_tokens({"unk_token": "<unk>"}) |
|
tokenizer.add_special_tokens({"bos_token": "<s>"}) |
|
tokenizer.add_special_tokens({"eos_token": "</s>"}) |
|
|
|
prompter_module = getattr(importlib.import_module("axolotl.prompters"), prompter) |
|
|
|
while True: |
|
|
|
instruction = get_multi_line_input() |
|
if not instruction: |
|
return |
|
prompt: str = next(prompter_module().build_prompt(instruction=instruction)) |
|
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True) |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
|
|
generated = model.generate( |
|
inputs=batch["input_ids"].to(cfg.device), |
|
do_sample=True, |
|
use_cache=True, |
|
repetition_penalty=1.1, |
|
max_new_tokens=100, |
|
temperature=0.9, |
|
top_p=0.95, |
|
top_k=40, |
|
return_dict_in_generate=True, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
output_scores=False, |
|
) |
|
print(tokenizer.decode(generated["sequences"].cpu().tolist()[0])) |
|
|
|
|
|
def choose_config(path: Path): |
|
yaml_files = [file for file in path.glob("*.yml")] |
|
|
|
if not yaml_files: |
|
raise ValueError( |
|
"No YAML config files found in the specified directory. Are you using a .yml extension?" |
|
) |
|
|
|
print("Choose a YAML file:") |
|
for idx, file in enumerate(yaml_files): |
|
print(f"{idx + 1}. {file}") |
|
|
|
chosen_file = None |
|
while chosen_file is None: |
|
try: |
|
choice = int(input("Enter the number of your choice: ")) |
|
if 1 <= choice <= len(yaml_files): |
|
chosen_file = yaml_files[choice - 1] |
|
else: |
|
print("Invalid choice. Please choose a number from the list.") |
|
except ValueError: |
|
print("Invalid input. Please enter a number.") |
|
|
|
return chosen_file |
|
|
|
|
|
def train( |
|
config: Path = Path("configs/"), |
|
prepare_ds_only: bool = False, |
|
**kwargs, |
|
): |
|
if Path(config).is_dir(): |
|
config = choose_config(config) |
|
|
|
|
|
with open(config, "r") as f: |
|
cfg: AttrDefault = AttrDefault(lambda: None, yaml.load(f, Loader=yaml.Loader)) |
|
|
|
|
|
cfg_keys = dict(cfg).keys() |
|
for k in kwargs: |
|
|
|
if k in cfg_keys or cfg.strict is False: |
|
|
|
if isinstance(cfg[k], bool): |
|
cfg[k] = bool(kwargs[k]) |
|
else: |
|
cfg[k] = kwargs[k] |
|
|
|
|
|
cfg.gradient_accumulation_steps = cfg.batch_size // cfg.micro_batch_size |
|
cfg.world_size = int(os.environ.get("WORLD_SIZE", 1)) |
|
cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0)) |
|
choose_device(cfg) |
|
cfg.ddp = cfg.ddp if cfg.ddp is not None else cfg.world_size != 1 |
|
if cfg.ddp: |
|
cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))} |
|
cfg.gradient_accumulation_steps = ( |
|
cfg.gradient_accumulation_steps // cfg.world_size |
|
) |
|
setup_wandb_env_vars(cfg) |
|
if cfg.device == "mps": |
|
cfg.load_in_8bit = False |
|
cfg.tf32 = False |
|
if cfg.bf16: |
|
cfg.fp16 = True |
|
cfg.bf16 = False |
|
|
|
validate_config(cfg) |
|
|
|
|
|
logging.info("loading tokenizer...") |
|
tokenizer = load_tokenizer( |
|
cfg.base_model_config, |
|
cfg.tokenizer_type, |
|
cfg |
|
) |
|
|
|
if "inference" not in kwargs and "shard" not in kwargs: |
|
train_dataset, eval_dataset = load_prepare_datasets( |
|
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH |
|
) |
|
|
|
if prepare_ds_only: |
|
logging.info("Finished preparing dataset. Exiting...") |
|
return |
|
|
|
|
|
logging.info("loading model and peft_config...") |
|
model, peft_config = load_model( |
|
cfg.base_model, |
|
cfg.base_model_config, |
|
cfg.model_type, |
|
tokenizer, |
|
cfg, |
|
adapter=cfg.adapter, |
|
inference=("inference" in kwargs), |
|
) |
|
|
|
if "merge_lora" in kwargs and cfg.adapter is not None: |
|
logging.info("running merge of LoRA with base model") |
|
model = model.merge_and_unload() |
|
model.to(dtype=torch.float16) |
|
|
|
if cfg.local_rank == 0: |
|
logging.info("saving merged model") |
|
model.save_pretrained(str(Path(cfg.output_dir) / "merged")) |
|
return |
|
|
|
if "inference" in kwargs: |
|
logging.info("calling do_inference function") |
|
do_inference(cfg, model, tokenizer) |
|
return |
|
|
|
if "shard" in kwargs: |
|
model.save_pretrained(cfg.output_dir) |
|
return |
|
|
|
if cfg.debug: |
|
logging.info("check_dataset_labels...") |
|
check_dataset_labels( |
|
train_dataset.select( |
|
[random.randrange(0, len(train_dataset) - 1) for i in range(5)] |
|
), |
|
tokenizer, |
|
) |
|
|
|
trainer = setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer) |
|
|
|
model.config.use_cache = False |
|
|
|
if torch.__version__ >= "2" and sys.platform != "win32": |
|
logging.info("Compiling torch model") |
|
model = torch.compile(model) |
|
|
|
|
|
if peft_config: |
|
logging.info(f"Pre-saving adapter config to {cfg.output_dir}") |
|
peft_config.save_pretrained(cfg.output_dir) |
|
|
|
|
|
if cfg.local_rank == 0: |
|
signal.signal( |
|
signal.SIGINT, |
|
lambda signal, frame: (model.save_pretrained(cfg.output_dir), exit(0)), |
|
) |
|
|
|
logging.info("Starting trainer...") |
|
if cfg.group_by_length: |
|
logging.info("hang tight... sorting dataset for group_by_length") |
|
resume_from_checkpoint = cfg.resume_from_checkpoint |
|
if cfg.resume_from_checkpoint is None and cfg.auto_resume_from_checkpoints: |
|
possible_checkpoints = [ |
|
str(cp) for cp in Path(cfg.output_dir).glob("checkpoint-*") |
|
] |
|
if len(possible_checkpoints) > 0: |
|
sorted_paths = sorted( |
|
possible_checkpoints, key=lambda path: int(path.split("-")[-1]) |
|
) |
|
resume_from_checkpoint = sorted_paths[-1] |
|
logging.info( |
|
f"Using Auto-resume functionality to start with checkpoint at {resume_from_checkpoint}" |
|
) |
|
trainer.train(resume_from_checkpoint=resume_from_checkpoint) |
|
|
|
logging.info(f"Training Completed!!! Saving pre-trained model to {cfg.output_dir}") |
|
|
|
|
|
|
|
if cfg.local_rank == 0: |
|
model.save_pretrained(cfg.output_dir) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
fire.Fire(train) |
|
|