qwerrwe / src /axolotl /utils /trainer.py
winglian's picture
fix for zero value warmup steps
7882181
raw
history blame
5.8 kB
import math
import os
from pathlib import Path
import bitsandbytes as bnb
import torch.cuda
import transformers
from torch import nn
from torch.optim.lr_scheduler import OneCycleLR
from transformers import EarlyStoppingCallback
from transformers.trainer_pt_utils import get_parameter_names
def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
total_num_steps = int(
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
)
warmup_steps = cfg.warmup_steps if cfg.warmup_steps is not None else min(int(0.03 * total_num_steps), 100)
logging_steps = cfg.logging_steps if cfg.logging_steps is not None else max(min(int(0.005 * total_num_steps), 10), 1)
save_steps = eval_steps = cfg.save_steps if cfg.save_steps is not None else min(int(0.05 * total_num_steps), 200)
training_arguments_kwargs = {}
if cfg.bf16 == "full":
training_arguments_kwargs["bf16_full_eval"] = True
else:
training_arguments_kwargs["bf16"] = cfg.bf16
training_arguments_kwargs["tf32"] = cfg.tf32
training_arguments_kwargs["warmup_steps"] = warmup_steps
training_arguments_kwargs["logging_steps"] = logging_steps
if cfg.gradient_checkpointing is not None:
if cfg.load_4bit:
from alpaca_lora_4bit.gradient_checkpointing import apply_gradient_checkpointing
gradient_checkpointing_ratio = cfg.gradient_checkpointing_ratio if cfg.gradient_checkpointing_ratio else 1.0
apply_gradient_checkpointing(model, checkpoint_ratio=gradient_checkpointing_ratio)
else:
training_arguments_kwargs["gradient_checkpointing"] = cfg.gradient_checkpointing
# deepspeed
if os.environ.get("ACCELERATE_USE_DEEPSPEED") == "true" and torch.cuda.device_count() > 1:
if cfg.deepspeed:
training_arguments_kwargs["deepspeed"] = cfg.deepspeed
else:
# make a guess here
# TODO search Path("./") for one
training_arguments_kwargs["deepspeed"] = "./ds_config.json"
training_args = transformers.TrainingArguments(
per_device_train_batch_size=cfg.micro_batch_size,
gradient_accumulation_steps=cfg.gradient_accumulation_steps,
num_train_epochs=cfg.num_epochs,
learning_rate=cfg.learning_rate,
evaluation_strategy="steps" if cfg.val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=eval_steps if cfg.val_set_size > 0 else None,
save_steps=save_steps,
output_dir=cfg.output_dir,
save_total_limit=3,
load_best_model_at_end=True if cfg.val_set_size > 0 and save_steps % eval_steps == 0 else False,
ddp_find_unused_parameters=False if cfg.ddp else None,
group_by_length=cfg.group_by_length,
report_to="wandb" if cfg.use_wandb else None,
run_name=cfg.wandb_run_id if cfg.use_wandb else None,
optim=cfg.optimizer if cfg.optimizer != "adam8bit" else cfg.optimizer,
lr_scheduler_type=cfg.lr_scheduler if cfg.lr_scheduler else None,
weight_decay=cfg.weight_decay if cfg.weight_decay else 0.0,
fsdp=cfg.fsdp.split(" ") if cfg.fsdp else None,
fsdp_transformer_layer_cls_to_wrap=cfg.fsdp_transformer_layer_cls_to_wrap if cfg.fsdp_transformer_layer_cls_to_wrap else None,
**training_arguments_kwargs,
)
trainer_kwargs = {}
if cfg.optimizer == "adam8bit" and not cfg.load_4bit and not "deepspeed" in training_arguments_kwargs:
decay_parameters = get_parameter_names(model, [nn.LayerNorm])
decay_parameters = [name for name in decay_parameters if "bias" not in name]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if n in decay_parameters],
"weight_decay": training_args.weight_decay,
},
{
"params": [
p for n, p in model.named_parameters() if n not in decay_parameters
],
"weight_decay": 0.0,
},
]
optimizer = bnb.optim.Adam8bit(
optimizer_grouped_parameters,
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
lr=training_args.learning_rate,
)
if cfg.lr_scheduler == "one_cycle":
lr_scheduler_kwargs = (
cfg.lr_scheduler_kwargs if cfg.lr_scheduler_kwargs else {}
)
lr_scheduler = OneCycleLR(
optimizer,
cfg.learning_rate,
total_steps=total_num_steps,
**lr_scheduler_kwargs,
)
else:
lr_scheduler = transformers.get_cosine_schedule_with_warmup(
optimizer,
training_args.warmup_steps,
total_num_steps,
)
trainer_kwargs["optimizers"] = (optimizer, lr_scheduler)
# TODO on_save callback to sync checkpoints to GCP/AWS in background
if cfg.early_stopping_patience:
early_stop_cb = EarlyStoppingCallback(
cfg.early_stopping_patience,
)
trainer_kwargs["callbacks"] = [early_stop_cb]
data_collator_kwargs = {
"padding": True,
}
if cfg.collator_pad_to_longest:
data_collator_kwargs["padding"] = "longest"
else:
data_collator_kwargs["pad_to_multiple_of"] = 8
trainer = transformers.Trainer(
model=model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
args=training_args,
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer,
return_tensors="pt",
**data_collator_kwargs,
),
**trainer_kwargs,
)
return trainer