qwerrwe / tests /e2e /patched /test_4d_multipack_llama.py
winglian's picture
support for true batches with multipack (#1230)
00568c1 unverified
raw
history blame
3.78 kB
"""
E2E tests for multipack fft llama using 4d attention masks
"""
import logging
import os
import unittest
from pathlib import Path
from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault
from ..utils import require_torch_2_1_1, with_temp_dir
LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"
class Test4dMultipackLlama(unittest.TestCase):
"""
Test case for Llama models using 4d attention with multipack
"""
@require_torch_2_1_1
@with_temp_dir
def test_sdp_lora_packing(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"flash_attention": False,
"sdp_attention": True,
"sample_packing": True,
"pad_to_sequence_len": True,
"load_in_8bit": True,
"adapter": "lora",
"lora_r": 32,
"lora_alpha": 16,
"lora_dropout": 0.05,
"lora_target_linear": True,
"sequence_len": 1024,
"val_set_size": 0.1,
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"num_epochs": 2,
"micro_batch_size": 2,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_torch",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"eval_steps": 10,
"fp16": True,
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "adapter_model.bin").exists()
@with_temp_dir
def test_torch_lora_packing(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"flash_attention": False,
"sdp_attention": False,
"sample_packing": True,
"pad_to_sequence_len": True,
"sequence_len": 1024,
"load_in_8bit": True,
"adapter": "lora",
"lora_r": 32,
"lora_alpha": 16,
"lora_dropout": 0.05,
"lora_target_linear": True,
"val_set_size": 0.1,
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"num_epochs": 2,
"micro_batch_size": 2,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_torch",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"eval_steps": 10,
"fp16": True,
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "adapter_model.bin").exists()