qwerrwe / src /axolotl /monkeypatch /llama_landmark_attn.py
Nanobit's picture
Fix grad checkpoint and outputs param
2a801b0
raw
history blame
63.6 kB
# pylint: skip-file
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PyTorch LLaMA model.
Taken from https://github.com/epfml/landmark-attention/blob/main/llama/llama_mem.py and modified.
"""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "LlamaConfig"
MEM_TOKEN = "<landmark>" # nosec
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
input_ids_shape: torch.Size,
dtype: torch.dtype,
device: torch.device,
past_key_values_length: int = 0,
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full(
(tgt_len, tgt_len),
torch.tensor(torch.finfo(dtype).min, device=device),
device=device,
)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat(
[
torch.zeros(
tgt_len, past_key_values_length, dtype=dtype, device=device
),
mask,
],
dim=-1,
)
return mask[None, None, :, :].expand(
bsz, 1, tgt_len, tgt_len + past_key_values_length
)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.finfo(dtype).min
)
class LlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
LlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
class LlamaRotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
self.register_buffer("inv_freq", inv_freq)
# Build here to make `torch.jit.trace` work.
self.max_seq_len_cached = max_position_embeddings
t = torch.arange(
self.max_seq_len_cached,
device=self.inv_freq.device,
dtype=self.inv_freq.dtype,
)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer(
"cos_cached", emb.cos()[None, None, :, :], persistent=False
)
self.register_buffer(
"sin_cached", emb.sin()[None, None, :, :], persistent=False
)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
if seq_len > self.max_seq_len_cached:
self.max_seq_len_cached = seq_len
t = torch.arange(
self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype
)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.register_buffer(
"cos_cached", emb.cos()[None, None, :, :], persistent=False
)
self.register_buffer(
"sin_cached", emb.sin()[None, None, :, :], persistent=False
)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
if q is None:
q_embed = None
else:
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class LlamaMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
):
super().__init__()
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class LandmarkGroupedSoftmaxFunction(torch.autograd.Function):
# Note that forward, setup_context, and backward are @staticmethods
@staticmethod
def forward(ctx, x, dim, mem_cnt, resp_mem_idx):
new_shape = list(x.shape)
new_shape[dim] = mem_cnt # max_mem_cnt.item()
max_by_group = x.new_zeros((*new_shape,))
max_by_group.scatter_reduce_(
src=x, index=resp_mem_idx, dim=dim, reduce="amax", include_self=False
)
maxes = torch.gather(max_by_group, dim, resp_mem_idx)
# x_exp = torch.exp(x - torch.where(torch.isinf(maxes), 0, maxes))
x_exp = torch.exp((x - maxes).to(torch.float32))
cumsum_by_group = torch.zeros_like(max_by_group, dtype=x_exp.dtype)
cumsum_by_group.scatter_add_(
dim,
resp_mem_idx,
x_exp,
)
denom = torch.gather(cumsum_by_group, dim, resp_mem_idx)
# probs = torch.where(denom < 0.5, 0, x_exp / denom)
probs = x_exp / denom
ctx.mem_cnt = mem_cnt
ctx.dim = dim
ctx.save_for_backward(resp_mem_idx, probs)
return probs
@staticmethod
def backward(ctx, grad_probs):
mem_cnt = ctx.mem_cnt
dim = ctx.dim
resp_mem_idx, probs = ctx.saved_tensors
grad_x = grad_dim = grad_mem_cnt = grad_resp_mem_idx = None
if ctx.needs_input_grad[0] or ctx.needs_input_grad[4]:
grad_pair = grad_probs * probs
new_shape = list(probs.shape)
new_shape[dim] = mem_cnt # max_mem_cnt.item()
cumsum_by_group = grad_pair.new_zeros((*new_shape,))
cumsum_by_group.scatter_add_(dim, resp_mem_idx, grad_pair)
if ctx.needs_input_grad[0]:
grad_sum = torch.gather(cumsum_by_group, dim, resp_mem_idx)
grad_x = grad_pair - probs * grad_sum
assert not ctx.needs_input_grad[1]
assert not ctx.needs_input_grad[2]
assert not ctx.needs_input_grad[3]
return grad_x, grad_dim, grad_mem_cnt, grad_resp_mem_idx
def landmark_grouped_softmax(x, dim, is_mem, last_section_mask):
last_and_rest_mask = last_section_mask # | mask
full_access_mask = is_mem | last_and_rest_mask
max_mem_cnt = 16
mem_group_idx = torch.cumsum(is_mem, dim=dim)
mem_bucket_id = max_mem_cnt - 1
resp_mem_idx = torch.where(
last_and_rest_mask,
max_mem_cnt - 1,
torch.where(is_mem, mem_bucket_id, mem_group_idx),
)
probs = LandmarkGroupedSoftmaxFunction.apply(x, dim, max_mem_cnt, resp_mem_idx)
new_shape = list(x.shape)
new_shape[dim] = max_mem_cnt
group_prob = probs.new_zeros((*new_shape,))
group_prob.scatter_(
dim, torch.where(is_mem, mem_group_idx - 1, max_mem_cnt - 1), probs
)
probs = probs.mul(
torch.where(
full_access_mask,
last_section_mask,
torch.gather(group_prob, dim, resp_mem_idx),
)
)
return probs
class LlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: LlamaConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.max_position_embeddings = config.max_position_embeddings
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(
self.hidden_size, self.num_heads * self.head_dim, bias=False
)
self.k_proj = nn.Linear(
self.hidden_size, self.num_heads * self.head_dim, bias=False
)
self.v_proj = nn.Linear(
self.hidden_size, self.num_heads * self.head_dim, bias=False
)
self.o_proj = nn.Linear(
self.num_heads * self.head_dim, self.hidden_size, bias=False
)
self.rotary_emb = LlamaRotaryEmbedding(
self.head_dim, max_position_embeddings=self.max_position_embeddings
)
self.mem_freq = None
self.top_k = None
self.max_cache_size = None
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return (
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
.transpose(1, 2)
.contiguous()
)
def set_mem_cache_args(self, mem_freq, top_k, max_cache_size):
self.mem_freq = mem_freq
self.top_k = top_k
self.max_cache_size = max_cache_size
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
is_mem: Optional[torch.Tensor] = None,
last_section_mask: Optional[torch.Tensor] = None,
offload_cache_to_cpu: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = (
self.q_proj(hidden_states)
.view(bsz, q_len, self.num_heads, self.head_dim)
.transpose(1, 2)
)
key_states = (
self.k_proj(hidden_states)
.view(bsz, q_len, self.num_heads, self.head_dim)
.transpose(1, 2)
)
value_states = (
self.v_proj(hidden_states)
.view(bsz, q_len, self.num_heads, self.head_dim)
.transpose(1, 2)
)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
if len(past_key_value) > 2:
kv_seq_len += past_key_value[3].shape[2] * past_key_value[3].shape[3]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
key_states_before_pos = key_states
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids
)
# [bsz, nh, t, hd]
attn_prefix = None
if past_key_value is not None:
# reuse k, v, self_attention
if self.mem_freq is None:
cache_len = past_key_value[0].shape[2]
if self.max_cache_size is not None:
cache_len = min(cache_len, self.max_cache_size)
if is_mem is not None:
is_mem = torch.cat(
(is_mem.new_zeros((1, 1, q_len, cache_len)), is_mem), dim=-1
)
last_section_mask = torch.cat(
(
last_section_mask.new_ones((1, 1, q_len, cache_len)),
last_section_mask,
),
dim=-1,
)
past_key_states = torch.cat([past_key_value[0], key_states], dim=2)
past_value_states = torch.cat([past_key_value[1], value_states], dim=2)
key_states = past_key_states[:, :, -(q_len + cache_len) :]
value_states = past_value_states[:, :, -(q_len + cache_len) :]
expected_att_size = (bsz, self.num_heads, q_len, cache_len + q_len)
else:
orig_value_states = value_states
incomplete_len = past_key_value[0].shape[2] % (self.mem_freq + 1)
full_len = past_key_value[0].shape[2] - incomplete_len
past_key_mem, past_key_incomplete = torch.split(
past_key_value[0], (full_len, incomplete_len), dim=2
)
past_value_mem, past_value_incomplete = torch.split(
past_key_value[1], (full_len, incomplete_len), dim=2
)
if offload_cache_to_cpu:
past_key_value = (
past_key_incomplete,
past_value_incomplete,
*past_key_value[2:],
)
if incomplete_len > 0:
assert q_len + incomplete_len <= (self.mem_freq + 1)
is_mem = torch.cat(
(is_mem.new_zeros((1, 1, q_len, incomplete_len)), is_mem), dim=-1
)
last_section_mask = torch.cat(
(
last_section_mask.new_ones((1, 1, q_len, incomplete_len)),
last_section_mask,
),
dim=-1,
)
if len(past_key_value) > 2:
full_len += past_key_value[3].shape[2] * past_key_value[3].shape[3]
past_key_incomplete_pos = torch.arange(
full_len,
full_len + incomplete_len,
dtype=torch.long,
device=position_ids.device,
).unsqueeze(0)
_, past_key_incomplete = apply_rotary_pos_emb(
None, past_key_incomplete, cos, sin, past_key_incomplete_pos
)
key_states = torch.cat((past_key_incomplete, key_states), dim=2)
value_states = torch.cat((past_value_incomplete, value_states), dim=2)
past_key_mem = past_key_mem.view(
bsz, self.num_heads, -1, self.mem_freq + 1, self.head_dim
)
past_value_mem = past_value_mem.view(
bsz, self.num_heads, -1, self.mem_freq + 1, self.head_dim
)
if len(past_key_value) > 2:
mem_key_nopos = torch.cat(
(
past_key_value[2],
past_key_mem.select(dim=3, index=self.mem_freq),
),
dim=2,
)
past_key_mem_offload = past_key_value[3]
past_key_mem = torch.cat(
(
past_key_mem_offload,
past_key_mem.to(past_key_mem_offload.device),
),
dim=2,
)
past_value_mem = torch.cat(
(
past_key_value[4],
past_value_mem.to(past_key_mem_offload.device),
),
dim=2,
)
else:
mem_key_nopos = past_key_mem.select(dim=3, index=self.mem_freq)
num_mems = past_key_mem.shape[2]
top_k = min(self.top_k, num_mems)
prefix_len = full_len - (top_k + 1) * (self.mem_freq + 1)
mem_indices = torch.cat(
(
position_ids.new_zeros((max(0, num_mems - top_k),)),
torch.arange(
1,
top_k + 1,
device=query_states.device,
dtype=position_ids.dtype,
),
),
dim=0,
)
mem_pos = (mem_indices * (self.mem_freq + 1) + self.mem_freq).unsqueeze(
0
).expand(bsz, -1) + prefix_len
_, mem_key = apply_rotary_pos_emb(
None, mem_key_nopos, cos, sin, mem_pos
)
mem_attn_weights = torch.matmul(
query_states, mem_key.transpose(2, 3)
) / math.sqrt(self.head_dim)
if offload_cache_to_cpu:
aggregate = "max_over_tokens"
else:
aggregate = None
if aggregate == "max_over_tokens":
token_retrievers = 1
head_retrievers = self.num_heads
mem_attn_weights = torch.nn.functional.softmax(
mem_attn_weights, dim=-1
)
mem_attn_weights = mem_attn_weights.amax(dim=2, keepdim=True)
elif aggregate is None:
token_retrievers = q_len
head_retrievers = self.num_heads
else:
raise NotImplementedError()
mem_selected_idx = (
mem_attn_weights.topk(dim=-1, k=top_k)[1]
.sort(dim=-1)[0]
.view(bsz, head_retrievers, token_retrievers, top_k)
)
selected_indices = torch.arange(
0,
top_k * (self.mem_freq + 1),
device=query_states.device,
dtype=position_ids.dtype,
)
selected_indices = torch.where(
mem_selected_idx >= num_mems - top_k, self.mem_freq + 1, 0
).unsqueeze(-1) + selected_indices.view(
1, 1, 1, top_k, self.mem_freq + 1
)
selected_indices = (
selected_indices.view(
bsz, head_retrievers, token_retrievers, -1
).expand(bsz, self.num_heads, q_len, -1)
+ prefix_len
)
mem_selected_idx = mem_selected_idx.to(past_key_mem.device)
mem_selected_idx = mem_selected_idx.view(
bsz, self.num_heads, token_retrievers, top_k, 1, 1
).expand(
bsz,
self.num_heads,
token_retrievers,
top_k,
self.mem_freq + 1,
self.head_dim,
)
selected_keys = past_key_mem.unsqueeze(2).expand(
bsz,
self.num_heads,
token_retrievers,
-1,
self.mem_freq + 1,
self.head_dim,
)
selected_keys = selected_keys.take_along_dim(
mem_selected_idx, dim=3
).to(query_states.device)
selected_values = (
past_value_mem.unsqueeze(2)
.expand(
bsz,
self.num_heads,
token_retrievers,
-1,
self.mem_freq + 1,
self.head_dim,
)
.take_along_dim(mem_selected_idx, dim=3)
.to(query_states.device)
)
selected_keys = selected_keys.view(
bsz, self.num_heads, token_retrievers, -1, self.head_dim
).expand(bsz, self.num_heads, q_len, -1, self.head_dim)
selected_keys = apply_rotary_pos_emb(
None, selected_keys.unsqueeze(1), cos, sin, selected_indices
)[1].squeeze(1)
selected_values = selected_values.view(
bsz, self.num_heads, token_retrievers, -1, self.head_dim
).expand(bsz, self.num_heads, q_len, -1, self.head_dim)
attn_prefix = torch.matmul(
query_states.unsqueeze(3), selected_keys.transpose(3, 4)
).squeeze(3) / math.sqrt(self.head_dim)
is_mem_prefix = (
torch.cat(
(is_mem.new_zeros((self.mem_freq,)), is_mem.new_ones((1,)))
)
.unsqueeze(0)
.repeat((top_k, 1))
)
is_mem_prefix = is_mem_prefix.view(1, 1, 1, -1).expand(1, 1, q_len, -1)
is_mem = torch.cat((is_mem_prefix, is_mem), dim=-1)
last_section_mask = torch.cat(
(
last_section_mask.new_zeros(
(1, 1, q_len, top_k * (self.mem_freq + 1))
),
last_section_mask,
),
dim=-1,
)
expected_att_size = (bsz, self.num_heads, q_len, q_len + incomplete_len)
past_key_states = torch.cat(
[past_key_value[0], key_states_before_pos], dim=2
)
past_value_states = torch.cat(
[past_key_value[1], orig_value_states], dim=2
)
if offload_cache_to_cpu:
past_key_value = (
(
past_key_states,
past_value_states,
mem_key_nopos,
past_key_mem.to("cpu"),
past_value_mem.to("cpu"),
*past_key_value[5:],
)
if use_cache
else None
)
else:
past_key_value = (
(past_key_states, past_value_states) if use_cache else None
)
else:
if self.mem_freq is None:
past_key_states = key_states
else:
past_key_states = key_states_before_pos
past_value_states = value_states
expected_att_size = (bsz, self.num_heads, q_len, kv_seq_len)
past_key_value = (past_key_states, past_value_states) if use_cache else None
attn_weights = torch.matmul(
query_states, key_states.transpose(2, 3)
) / math.sqrt(self.head_dim)
if attn_weights.size() != expected_att_size:
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask[..., -attn_weights.shape[-1] :]
attn_weights = torch.max(
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
)
if attn_prefix is not None:
attn_weights = torch.cat((attn_prefix, attn_weights), dim=-1)
# upcast attention to fp32
if is_mem is None:
raise ValueError("Don't use this without landmarks")
# attn_weights = nn.functional.softmax(
# attn_weights, dim=-1, dtype=torch.float32
# ).to(query_states.dtype)
else:
attn_weights = landmark_grouped_softmax(
attn_weights,
dim=-1,
is_mem=is_mem.expand(-1, self.num_heads, -1, -1),
last_section_mask=last_section_mask,
).to(query_states.dtype)
if attn_prefix is not None:
attn_prefix, attn_weights = torch.split(
attn_weights,
(attn_prefix.shape[-1], attn_weights.shape[-1] - attn_prefix.shape[-1]),
dim=-1,
)
attn_output = torch.matmul(attn_weights, value_states)
if attn_prefix is not None:
attn_output += torch.matmul(
attn_prefix.unsqueeze(3), selected_values
).squeeze(3)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class LlamaDecoderLayer(nn.Module):
def __init__(self, config: LlamaConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = LlamaAttention(config=config)
self.mlp = LlamaMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
)
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = LlamaRMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def set_mem_cache_args(self, mem_freq, top_k, max_cache_size):
self.self_attn.set_mem_cache_args(mem_freq, top_k, max_cache_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
is_mem: Optional[torch.Tensor] = None,
last_section_mask: Optional[torch.Tensor] = None,
offload_cache_to_cpu: bool = False,
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
is_mem=is_mem,
last_section_mask=last_section_mask,
offload_cache_to_cpu=offload_cache_to_cpu,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
LLAMA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`LlamaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
LLAMA_START_DOCSTRING,
)
class LlamaPreTrainedModel(PreTrainedModel):
config_class = LlamaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["LlamaDecoderLayer"]
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, LlamaModel):
module.gradient_checkpointing = value
LLAMA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
LLAMA_START_DOCSTRING,
)
class LlamaModel(LlamaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
Args:
config: LlamaConfig
"""
def __init__(self, config: LlamaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
self.layers = nn.ModuleList(
[LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]
)
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.mem_id = None
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def set_mem_id(self, mem_id):
self.mem_id = mem_id
def set_mem_cache_args(self, mem_freq, top_k, max_cache_size):
for layer in self.layers:
layer.set_mem_cache_args(mem_freq, top_k, max_cache_size)
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
).to(inputs_embeds.device)
combined_attention_mask = (
expanded_attn_mask
if combined_attention_mask is None
else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
offload_cache_to_cpu: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
is_mem = None
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
if self.mem_id is not None:
with torch.no_grad():
is_mem = input_ids == self.mem_id
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
if self.mem_id is not None:
raise NotImplementedError
else:
raise ValueError(
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
)
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
if is_mem is not None:
pass
# raise NotImplementedError
past_key_values_length = past_key_values[0][0].shape[2]
if len(past_key_values[0]) > 2:
past_key_values_length += (
past_key_values[0][3].shape[2] * past_key_values[0][3].shape[3]
)
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past),
dtype=torch.bool,
device=inputs_embeds.device,
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
last_section_mask = None
if is_mem is not None:
is_mem = is_mem.unsqueeze(1).unsqueeze(2)
current_len = input_ids.shape[1]
mem_ids = torch.where(
attention_mask[..., -current_len:] < -1,
0,
torch.cumsum(is_mem, -1) - is_mem.int(),
)
last_section_mask = torch.amax(mem_ids, -1, keepdim=True) == mem_ids
attention_mask[..., -current_len:].masked_fill_(
last_section_mask & is_mem,
torch.tensor(
torch.finfo(inputs_embeds.dtype).min, device=inputs_embeds.device
),
)
last_section_mask.logical_and_(attention_mask[..., -current_len:] > -1)
is_mem = is_mem.logical_and(attention_mask[..., -current_len:] > -1)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = (
past_key_values[idx] if past_key_values is not None else None
)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
None,
output_attentions,
None,
is_mem,
last_section_mask,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
is_mem=is_mem,
last_section_mask=last_section_mask,
offload_cache_to_cpu=offload_cache_to_cpu,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class LlamaForCausalLM(LlamaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.model = LlamaModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.mem_id = None
self.mem_freq = None
self.top_k = None
self.max_seq_len = None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
offload_cache_to_cpu: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, LlamaForCausalLM
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you consciours? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
```"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
window_len = self.max_seq_len or input_ids.shape[1]
last_logits = None
for _, idx in enumerate(range(0, input_ids.shape[1], window_len)):
if idx >= 1:
if output_attentions or output_hidden_states:
raise NotImplementedError
if not use_cache:
raise NotImplementedError
outputs = self.model(
input_ids=input_ids[:, idx : idx + window_len],
attention_mask=attention_mask[
:, : idx + window_len + attention_mask.shape[1] - input_ids.shape[1]
]
if attention_mask is not None
else None,
position_ids=position_ids[:, idx : idx + window_len]
if position_ids is not None
else None,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds[:, idx : idx + window_len]
if inputs_embeds is not None
else None,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
offload_cache_to_cpu=offload_cache_to_cpu,
)
past_key_values = outputs.past_key_values
if last_logits is not None:
last_logits = torch.cat((last_logits, outputs[0]), dim=-2)
last_logits = outputs[0]
hidden_states = last_logits
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def set_mem_id(self, mem_id):
self.mem_id = mem_id
self.model.set_mem_id(mem_id)
def set_mem_cache_args(self, max_seq_len, mem_freq, top_k, max_cache_size):
self.mem_freq = mem_freq
self.top_k = top_k
self.max_seq_len = max_seq_len
if self.max_seq_len is not None:
assert self.max_seq_len % (self.mem_freq + 1) == 0
self.model.set_mem_cache_args(mem_freq, top_k, max_cache_size)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
total_len = input_ids.shape[1]
if past_key_values:
prev_len = input_ids.shape[1] - 1
else:
prev_len = 0
position_ids = kwargs.get("position_ids", None)
if self.mem_freq is not None:
if position_ids is not None:
raise NotImplementedError
# T = input_ids.shape[1]
prev_incomplete_len = prev_len % self.mem_freq
prev_complete_len = prev_len - prev_incomplete_len
incomplete_len = total_len % self.mem_freq
new_full_len = total_len - prev_complete_len - incomplete_len
prev_input, input_ids_with_mem, input_ids_without_mem = torch.split(
input_ids, (prev_complete_len, new_full_len, incomplete_len), dim=-1
)
bsz, _ = input_ids.size()
input_ids_with_mem = input_ids_with_mem.view(bsz, -1, self.mem_freq)
input_ids_with_mem = torch.cat(
(
input_ids_with_mem,
input_ids_with_mem.new_full(
(bsz, input_ids_with_mem.shape[1], 1), self.mem_id
),
),
dim=-1,
).view(bsz, -1)
input_ids = torch.cat(
(prev_input, input_ids_with_mem, input_ids_without_mem), dim=-1
)
if attention_mask is not None:
attention_mask_with_mem, attention_mask_without_mem = torch.split(
attention_mask,
(prev_complete_len + new_full_len, incomplete_len),
dim=-1,
)
attention_mask_with_mem = attention_mask_with_mem.view(
bsz, -1, self.mem_freq
)
attention_mask_with_mem = torch.cat(
(
attention_mask_with_mem,
attention_mask_with_mem.new_ones(
(bsz, attention_mask_with_mem.shape[1], 1)
),
),
dim=-1,
).view(bsz, -1)
attention_mask = torch.cat(
(attention_mask_with_mem, attention_mask_without_mem), dim=-1
)
input_ids = input_ids[:, prev_len:]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
position_ids = position_ids[:, -input_ids.shape[1] :].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if (
inputs_embeds is not None
and past_key_values is None
and self.mem_freq is None
):
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"offload_cache_to_cpu": kwargs.get("offload_cache_to_cpu"),
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(
past_state.index_select(0, beam_idx) for past_state in layer_past
),
)
return reordered_past
@add_start_docstrings(
"""
The LLaMa Model transformer with a sequence classification head on top (linear layer).
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
LLAMA_START_DOCSTRING,
)
class LlamaForSequenceClassification(LlamaPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = LlamaModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError(
"Cannot handle batch sizes > 1 if no padding token is defined."
)
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (
torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
).to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[
torch.arange(batch_size, device=logits.device), sequence_lengths
]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (
labels.dtype == torch.long or labels.dtype == torch.int
):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(
pooled_logits.view(-1, self.num_labels), labels.view(-1)
)
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def add_mem_tokens(example, mem_freq, mem_id):
x = example["input_ids"]
ret = []
prev_idx = 0
for t_idx in range(mem_freq, len(x), mem_freq):
ret.extend(x[prev_idx:t_idx])
ret.append(mem_id)
prev_idx = t_idx
ret.extend(x[prev_idx:])
# drop attention_mask
return {"input_ids": ret}