Nanobit's picture
Fix(model): Linear detected and added to target module with rope linear (#738)
440c3ab unverified
raw
history blame
21.5 kB
"""Module for models and model loading"""
import logging
import math
import os
from typing import Optional, Tuple # noqa: F401
import bitsandbytes as bnb
import torch
import transformers
from optimum.bettertransformer import BetterTransformer
from peft import PeftConfig, prepare_model_for_kbit_training
from peft.tuners.lora import QuantLinear
from transformers import ( # noqa: F401
AddedToken,
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
GPTQConfig,
LlamaConfig,
PreTrainedModel,
PreTrainedTokenizerBase,
)
from axolotl.prompt_tokenizers import LLAMA_DEFAULT_EOS_TOKEN
from axolotl.utils.bench import log_gpu_memory_usage
from axolotl.utils.dict import DictDefault
LOG = logging.getLogger("axolotl")
def load_model_config(cfg):
model_config_name = cfg.base_model_config or cfg.base_model
trust_remote_code: bool = False or cfg.trust_remote_code
return AutoConfig.from_pretrained(
model_config_name, trust_remote_code=trust_remote_code
)
def load_tokenizer(cfg):
tokenizer_kwargs = {}
use_fast = True # this is the default
if cfg.tokenizer_use_fast is not None:
use_fast = cfg.tokenizer_use_fast
if cfg.tokenizer_legacy is not None:
# True is the default w/ https://github.com/huggingface/transformers/pull/25224
tokenizer_kwargs["legacy"] = cfg.tokenizer_legacy
tokenizer_cls = AutoTokenizer
if cfg.tokenizer_type:
tokenizer_cls = getattr(transformers, cfg.tokenizer_type)
tokenizer_config = cfg.tokenizer_config or cfg.base_model_config
tokenizer = tokenizer_cls.from_pretrained(
tokenizer_config,
trust_remote_code=cfg.trust_remote_code or False,
use_fast=use_fast,
**tokenizer_kwargs,
)
if (
tokenizer.__class__.__name__
in [
"LlamaTokenizer",
"LlamaTokenizerFast",
"CodeLlamaTokenizer",
]
and hasattr(tokenizer, "pad_token")
and not tokenizer.pad_token
):
# set a pad_token, but use eos_token so we don't add a new token
tokenizer.pad_token = LLAMA_DEFAULT_EOS_TOKEN
LOG.debug(f"EOS: {tokenizer.eos_token_id} / {tokenizer.eos_token}")
LOG.debug(f"BOS: {tokenizer.bos_token_id} / {tokenizer.bos_token}")
LOG.debug(f"PAD: {tokenizer.pad_token_id} / {tokenizer.pad_token}")
LOG.debug(f"UNK: {tokenizer.unk_token_id} / {tokenizer.unk_token}")
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Mistral's official FA implementation requires left padding
if cfg.is_mistral_derived_model and cfg.flash_attention and not cfg.sample_packing:
tokenizer.padding_side = "left"
if cfg.special_tokens:
for k, val in cfg.special_tokens.items():
tokenizer.add_special_tokens(
{k: AddedToken(val, rstrip=False, lstrip=False, normalized=False)}
)
if cfg.tokens:
tokenizer.add_tokens(
[
AddedToken(token, rstrip=False, lstrip=False, normalized=False)
for token in cfg.tokens
]
)
return tokenizer
def load_model(
cfg: DictDefault,
tokenizer: PreTrainedTokenizerBase,
inference: bool = False,
) -> Tuple[PreTrainedModel, Optional[PeftConfig]]:
"""
Load a model for a given configuration and tokenizer.
"""
base_model = cfg.base_model
base_model_config = cfg.base_model_config
model_type = cfg.model_type
model_config = load_model_config(cfg)
# TODO refactor as a kwarg
load_in_8bit = cfg.load_in_8bit
if hasattr(model_config, "model_type") and model_config.model_type == "btlm":
if cfg.flash_attention:
from axolotl.monkeypatch.btlm_attn_hijack_flash import (
replace_btlm_attn_with_flash_attn,
)
replace_btlm_attn_with_flash_attn(cfg.base_model)
if (
hasattr(model_config, "model_type")
and model_config.model_type == "stablelm_epoch"
):
if cfg.flash_attention and cfg.sample_packing:
from axolotl.monkeypatch.stablelm_attn_hijack_flash import (
replace_stablelm_attn_with_flash_attn,
)
replace_stablelm_attn_with_flash_attn(cfg.base_model)
if cfg.is_llama_derived_model and cfg.flash_attention and cfg.sample_packing:
if cfg.device not in ["mps", "cpu"] and not inference:
from axolotl.monkeypatch.llama_attn_hijack_flash import (
replace_llama_attn_with_flash_attn,
)
LOG.info("patching with flash attention for sample packing")
replace_llama_attn_with_flash_attn(
packed=cfg.sample_packing,
cross_entropy=cfg.flash_attn_cross_entropy,
rms_norm=cfg.flash_attn_rms_norm,
)
elif cfg.is_llama_derived_model and cfg.xformers_attention:
from axolotl.monkeypatch.llama_attn_hijack_xformers import (
hijack_llama_attention,
)
LOG.info("patching with xformers attention")
hijack_llama_attention()
elif cfg.is_llama_derived_model and cfg.sdp_attention:
from axolotl.monkeypatch.llama_attn_hijack_sdp import hijack_llama_sdp_attention
LOG.info("patching with sdp attention")
hijack_llama_sdp_attention()
elif cfg.is_llama_derived_model and cfg.landmark_attention:
from axolotl.monkeypatch.llama_landmark_attn import (
MEM_TOKEN,
patch_llama_with_landmark_attn,
)
LOG.info("patching with landmark attention")
patch_llama_with_landmark_attn()
# Note: This might overwrite previous additional_special_tokens
tokenizer.add_special_tokens({"additional_special_tokens": [MEM_TOKEN]})
if cfg.is_mistral_derived_model and cfg.flash_attention and cfg.sample_packing:
from axolotl.monkeypatch.mistral_attn_hijack_flash import (
replace_mistral_attn_with_flash_attn,
)
LOG.info("patching with flash attention")
replace_mistral_attn_with_flash_attn(packed=cfg.sample_packing)
if cfg.is_llama_derived_model and cfg.noisy_embedding_alpha:
from axolotl.monkeypatch.llama_embeddings_hijack import (
replace_llama_embeddings_with_uniform_distribution,
)
LOG.info("patching with noisy embeddings")
replace_llama_embeddings_with_uniform_distribution(
noise_alpha=cfg.noisy_embedding_alpha
)
if cfg.is_mistral_derived_model and cfg.noisy_embedding_alpha:
from axolotl.monkeypatch.mistral_embeddings_hijack import (
replace_mistral_embeddings_with_uniform_distribution,
)
LOG.info("patching with noisy embeddings")
replace_mistral_embeddings_with_uniform_distribution(
noise_alpha=cfg.noisy_embedding_alpha
)
if cfg.is_llama_derived_model and cfg.xpos_rope:
from axolotl.monkeypatch.xpos_rope_llama_monkey_patch import (
replace_llama_rope_with_xpos_rope,
)
LOG.info("patching with xpos rope")
replace_llama_rope_with_xpos_rope()
if (
cfg.is_llama_derived_model
and (cfg.max_packed_sequence_len or cfg.sample_packing)
and not inference
):
from axolotl.monkeypatch.llama_expand_mask import hijack_expand_mask
LOG.info("patching _expand_mask")
hijack_expand_mask()
model_kwargs = {}
model_kwargs["device_map"] = cfg.device_map
model_kwargs["torch_dtype"] = cfg.torch_dtype
if cfg.model_revision:
model_kwargs["revision"] = cfg.model_revision
if cfg.gptq:
if not hasattr(model_config, "quantization_config"):
LOG.warning("model config does not contain quantization_config information")
else:
if cfg.gptq_disable_exllama is not None:
model_config.quantization_config[
"disable_exllama"
] = cfg.gptq_disable_exllama
model_kwargs["quantization_config"] = GPTQConfig(
**model_config.quantization_config
)
if cfg.adapter == "qlora" and cfg.load_in_4bit:
model_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=cfg.torch_dtype,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
# sample packing uses custom FA2 patch
if cfg.flash_attention and not cfg.sample_packing:
if (
cfg.is_llama_derived_model
or cfg.is_falcon_derived_model
or cfg.is_mistral_derived_model
):
model_kwargs["use_flash_attention_2"] = True
try:
if cfg.is_llama_derived_model and not cfg.trust_remote_code and not cfg.gptq:
from transformers import LlamaForCausalLM
config_kwargs = {}
if cfg.rope_scaling:
config_kwargs["rope_scaling"] = cfg.rope_scaling
config = LlamaConfig.from_pretrained(
base_model_config,
**config_kwargs,
)
model = LlamaForCausalLM.from_pretrained(
base_model,
config=config,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
**model_kwargs,
)
# elif model_type == "GPTNeoXForCausalLM" and cfg.flash_attention:
# This is a WIP, still an issue with the backward pass
# RuntimeError: grad can be implicitly created only for scalar outputs
# TODO: try config.sequence_parallel = False
# # https://github.com/HazyResearch/flash-attention/blob/40a25c8ee7465cf547b929cfa2937034e37bfce9/tests/models/test_gpt_neox.py#L12
# # https://github.com/HazyResearch/flash-attention/tree/main/training#model-components
# # add `**kwargs` to https://github.com/HazyResearch/flash-attention/blob/40a25c8ee7465cf547b929cfa2937034e37bfce9/flash_attn/models/gpt.py#L442
# from flash_attn.utils.pretrained import state_dict_from_pretrained
# from flash_attn.models.gpt import GPTLMHeadModel
# from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox, gpt_neox_config_to_gpt2_config
# from transformers import GPTNeoXConfig
# config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(base_model))
# config.use_flash_attn = True
# config.fused_bias_fc = True
# config.fused_mlp = True # GPT-NeoX-20B uses "gelu_fast"
# config.activation_function = "gelu_fast"
# config.fused_dropout_add_ln = True
# # config.residual_in_fp32 = True
#
# model: GPTLMHeadModel = GPTLMHeadModel.from_pretrained(
# base_model,
# config,
# dtype=torch_dtype,
# device=cfg.device,
# )
# model.train() # sets to train instead of eval mode
elif model_type == "MixFormerSequentialForCausalLM":
from axolotl.models.phi import MixFormerSequentialForCausalLM
model = MixFormerSequentialForCausalLM.from_pretrained(
base_model,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
**model_kwargs,
)
elif model_type and not cfg.trust_remote_code:
if cfg.gptq:
model = AutoModelForCausalLM.from_pretrained(
base_model,
trust_remote_code=cfg.trust_remote_code or False,
**model_kwargs,
)
else:
model = getattr(transformers, model_type).from_pretrained(
base_model,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
trust_remote_code=cfg.trust_remote_code or False,
**model_kwargs,
)
else:
config = AutoConfig.from_pretrained(
base_model,
trust_remote_code=cfg.trust_remote_code or False,
)
# Shouldn't be a problem most of the time. will obviously error if the model doesn't support this
# when training starts
if (
hasattr(config, "max_seq_len")
and config.max_seq_len
and cfg.sequence_len > config.max_seq_len
):
config.max_seq_len = cfg.sequence_len
LOG.warning(f"increasing context length to {cfg.sequence_len}")
elif (
hasattr(config, "max_sequence_length")
and config.max_sequence_length
and cfg.sequence_len > config.max_sequence_length
):
config.max_sequence_length = cfg.sequence_len
LOG.warning(f"increasing context length to {cfg.sequence_len}")
if cfg.gptq:
model = AutoModelForCausalLM.from_pretrained(
base_model,
config=config,
trust_remote_code=cfg.trust_remote_code or False,
**model_kwargs,
)
else:
model = AutoModelForCausalLM.from_pretrained(
base_model,
config=config,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
trust_remote_code=cfg.trust_remote_code or False,
**model_kwargs,
)
except Exception as err: # pylint: disable=broad-exception-caught
LOG.error(
"Exception raised attempting to load model, retrying with AutoModelForCausalLM"
)
LOG.exception(err)
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
trust_remote_code=cfg.trust_remote_code or False,
**model_kwargs,
)
embeddings_len = (
math.ceil(len(tokenizer) / 32) * 32
if cfg.resize_token_embeddings_to_32x
else len(tokenizer)
)
if model.get_input_embeddings().num_embeddings < embeddings_len:
model.resize_token_embeddings(embeddings_len)
else:
model.tie_weights()
if (
hasattr(model.config, "max_position_embeddings")
and model.config.max_position_embeddings
and cfg.sequence_len > model.config.max_position_embeddings
):
LOG.warning(
f"increasing model.config.max_position_embeddings from {model.config.max_position_embeddings} to {cfg.sequence_len}"
)
model.config.max_position_embeddings = cfg.sequence_len
if model.device.type == "cuda":
log_gpu_memory_usage(LOG, "after model load", model.device)
# make sure these are fp32 per Ramesh et al. (2021)
for name, module in model.named_modules():
if "norm" in name:
module.to(torch.float32)
if model_config.model_type == "btlm":
# don't upcast lm_head for btlm
continue
if "lm_head" in name or "embed_tokens" in name:
if hasattr(module, "weight"):
module.to(torch.float32)
needs_fa2_dtype = cfg.adapter or cfg.fsdp
if (cfg.adapter == "lora" and load_in_8bit) or (
cfg.adapter == "qlora" and cfg.load_in_4bit
):
LOG.info("converting PEFT model w/ prepare_model_for_kbit_training")
if cfg.gradient_checkpointing:
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(
model, use_gradient_checkpointing=cfg.gradient_checkpointing
)
needs_fa2_dtype = True
# LlamaRMSNorm layers are in fp32 after kbit_training or full finetune, so we need to
# convert them back to fp16/bf16 for flash-attn compatibility.
if needs_fa2_dtype or (cfg.flash_attention and cfg.is_llama_derived_model):
LOG.info("converting modules to %s for flash attention", cfg.torch_dtype)
for name, module in model.named_modules():
if "norm" in name:
module.to(cfg.torch_dtype)
if "lm_head" in name or "embed_tokens" in name:
if hasattr(module, "weight"):
module.to(cfg.torch_dtype)
model, lora_config = load_adapter(model, cfg, cfg.adapter)
if cfg.ddp and not load_in_8bit:
model.to(f"cuda:{cfg.local_rank}")
if (
torch.cuda.device_count() > 1
and int(os.getenv("WORLD_SIZE", "1")) > 1
and (cfg.load_in_4bit)
):
# llama is PROBABLY model parallelizable, but the default isn't that it is
# so let's only set it for the 4bit, see
# https://github.com/johnsmith0031/alpaca_lora_4bit/blob/08b3fca4a4a9e0d3945be1bab4529f100a428636/finetune.py#L130-L133
setattr(model, "is_parallelizable", True)
setattr(model, "model_parallel", True)
requires_grad = []
for name, param in model.named_parameters(recurse=True):
if param.requires_grad:
requires_grad.append(f"{name}: {param.requires_grad}")
if len(requires_grad) == 0:
LOG.warning("there are no parameters that require gradient updates")
model.config.use_cache = False
if cfg.flash_optimum:
model = BetterTransformer.transform(model)
if cfg.adapter is not None:
log_gpu_memory_usage(LOG, "after adapters", model.device)
# TODO resume_from_checkpoint handling
return model, lora_config
def load_adapter(model, cfg, adapter, inference=False):
# type: (PreTrainedModel, DictDefault, Optional[str], bool) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
if adapter is None:
return model, None
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
if adapter in ["lora", "qlora"]:
return load_lora(model, cfg, inference=inference)
if adapter == "llama-adapter":
return load_llama_adapter(model, cfg)
raise NotImplementedError(f"{adapter} peft adapter not available")
def load_llama_adapter(model, cfg):
# type: (PreTrainedModel, DictDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
from peft import AdaptionPromptConfig, PeftModel, get_peft_model
peft_config = AdaptionPromptConfig(
adapter_layers=cfg.peft_adapter.layers, # layers (L)
adapter_len=cfg.peft_adapter.len, # prompt length (K)
task_type="CAUSAL_LM",
)
if cfg.lora_model_dir:
LOG.debug("Loading pretained PEFT - llama_adapter")
model = PeftModel.from_pretrained(
model,
cfg.lora_model_dir,
torch_dtype=torch.float16,
)
else:
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
return model, peft_config
def find_all_linear_names(model):
cls = (bnb.nn.Linear4bit, bnb.nn.Linear8bitLt, torch.nn.Linear, QuantLinear)
lora_module_names = set()
for name, module in model.named_modules():
if (
isinstance(module, cls)
or "Linear" in module.__class__.__name__
and module.__class__.__name__ not in ("LlamaLinearScalingRotaryEmbedding",)
):
names = name.split(".")
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if "lm_head" in lora_module_names: # needed for 16-bit
lora_module_names.remove("lm_head")
return list(lora_module_names)
def load_lora(model, cfg, inference=False):
# type: (PreTrainedModel, DictDefault, bool) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
from peft import LoraConfig, PeftModel, get_peft_model
lora_target_modules = list(cfg.lora_target_modules or [])
if cfg.lora_target_linear:
linear_names = find_all_linear_names(model)
LOG.info(f"found linear modules: {repr(linear_names)}")
lora_target_modules = list(set(lora_target_modules + linear_names))
lora_config = LoraConfig(
r=cfg.lora_r,
lora_alpha=cfg.lora_alpha,
target_modules=lora_target_modules,
lora_dropout=cfg.lora_dropout,
fan_in_fan_out=cfg.lora_fan_in_fan_out,
modules_to_save=cfg.lora_modules_to_save if cfg.lora_modules_to_save else None,
bias="none",
task_type="CAUSAL_LM",
)
if cfg.lora_model_dir:
LOG.debug("Loading pretained PEFT - LoRA")
model = PeftModel.from_pretrained(
model,
cfg.lora_model_dir,
is_trainable=(not inference),
)
else:
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
return model, lora_config