winglian's picture
refactor to set eval_batch_size earlier if unset, so we can warn if mismatched (#662)
2642cae unverified
raw
history blame
13.5 kB
"""Module for working with config dicts"""
import logging
import os
import torch
from transformers.utils import is_torch_bf16_gpu_available
from axolotl.utils.bench import log_gpu_memory_usage
from axolotl.utils.models import load_model_config
LOG = logging.getLogger("axolotl")
def choose_device(cfg):
def get_device():
try:
if torch.cuda.is_available():
return f"cuda:{cfg.local_rank}"
if torch.backends.mps.is_available():
return "mps"
raise SystemError("No CUDA/mps device found")
except Exception: # pylint: disable=broad-exception-caught
return "cpu"
cfg.device = get_device()
if cfg.world_size == 1:
cfg.device_map = "auto"
else:
if cfg.device.startswith("cuda"):
cfg.device_map = {"": torch.cuda.current_device()}
else:
cfg.device_map = {"": cfg.device}
# in `accelerate launch`, we need to not pass through any device map and let
# accelerate figure out which parts of the model to put on which gpu
accelerate_vars = [var for var in os.environ if var.startswith("ACCELERATE_USE_")]
if accelerate_vars:
cfg.device_map = None
def normalize_config(cfg):
# setup some derived config / hyperparams
cfg.gradient_accumulation_steps = cfg.gradient_accumulation_steps or (
cfg.batch_size // cfg.micro_batch_size
)
cfg.batch_size = (
cfg.batch_size or cfg.micro_batch_size * cfg.gradient_accumulation_steps
)
if cfg.eval_batch_size is None:
cfg.eval_batch_size = cfg.micro_batch_size
cfg.world_size = int(os.environ.get("WORLD_SIZE", 1))
cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0))
cfg.eval_table_size = cfg.eval_table_size or 0
cfg.eval_table_max_new_tokens = cfg.eval_table_max_new_tokens or 128
choose_device(cfg)
cfg.ddp = cfg.ddp if cfg.ddp is not None else cfg.world_size != 1
if cfg.ddp:
cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))}
cfg.batch_size = cfg.batch_size * cfg.world_size
if cfg.device == "mps":
cfg.load_in_8bit = False
cfg.tf32 = False
if cfg.bf16:
cfg.fp16 = True
cfg.bf16 = False
else:
torch.backends.cuda.matmul.allow_tf32 = cfg.tf32 or False
if cfg.bf16 or cfg.bfloat16:
cfg.torch_dtype = torch.bfloat16
elif cfg.load_in_8bit or cfg.fp16 or cfg.float16:
cfg.torch_dtype = torch.float16
else:
cfg.torch_dtype = torch.float32
cfg.dataset_processes = cfg.dataset_processes or os.cpu_count()
model_config = load_model_config(cfg)
cfg.model_config_type = model_config.model_type
# figure out if the model is llama
cfg.is_llama_derived_model = (
(hasattr(model_config, "model_type") and model_config.model_type == "llama")
or cfg.is_llama_derived_model
or "llama" in cfg.base_model.lower()
or (cfg.model_type and "llama" in cfg.model_type.lower())
)
# figure out if the model is falcon
cfg.is_falcon_derived_model = (
(
hasattr(model_config, "model_type")
and model_config.model_type
in [
"falcon",
"RefinedWebModel",
"RefinedWeb",
]
)
or cfg.is_falcon_derived_model
or "falcon" in cfg.base_model.lower()
or (cfg.model_type and "rwforcausallm" in cfg.model_type.lower())
)
cfg.is_mistral_derived_model = (
(
hasattr(model_config, "model_type")
and model_config.model_type
in [
"mistral",
]
)
or cfg.is_mistral_derived_model
or "mistral" in cfg.base_model.lower()
or (cfg.model_type and "mistral" in cfg.model_type.lower())
)
log_gpu_memory_usage(LOG, "baseline", cfg.device)
def validate_config(cfg):
if is_torch_bf16_gpu_available():
if not cfg.bf16 and not cfg.bfloat16:
LOG.info("bf16 support detected, but not enabled for this configuration.")
else:
if not cfg.merge_lora and (cfg.bf16 or cfg.bfloat16):
raise ValueError(
"bf16 requested, but AMP is not supported on this GPU. Requires Ampere series or above."
)
if cfg.max_packed_sequence_len and cfg.sample_packing:
raise ValueError(
"please set only one of max_packed_sequence_len (deprecated soon) or sample_packing"
)
if cfg.max_packed_sequence_len:
LOG.warning(
str(
PendingDeprecationWarning(
"max_packed_sequence_len will be deprecated in favor of sample_packing"
)
)
)
if cfg.sample_packing and not cfg.pad_to_sequence_len:
LOG.warning(
"`pad_to_sequence_len: true` is recommended when using sample_packing"
)
if cfg.gradient_accumulation_steps and cfg.batch_size:
raise ValueError(
"please set only one of gradient_accumulation_steps or batch_size"
)
if cfg.batch_size:
LOG.warning(
"%s\n%s",
"batch_size is not recommended. Please use gradient_accumulation_steps instead.",
"To calculate the equivalent gradient_accumulation_steps, divide batch_size / micro_batch_size / number of gpus.",
)
if cfg.eval_batch_size != cfg.micro_batch_size:
LOG.warning(
"eval_batch_size != micro_batch_size. This can lead to VRAM instability."
)
if cfg.load_4bit:
raise ValueError("cfg.load_4bit parameter has been deprecated")
if cfg.adapter == "qlora":
if cfg.merge_lora:
# can't merge qlora if loaded in 8bit or 4bit
if cfg.load_in_8bit:
raise ValueError("Can't merge qlora if loaded in 8bit")
if cfg.gptq:
raise ValueError("Can't merge qlora if gptq")
if cfg.load_in_4bit:
raise ValueError("Can't merge qlora if loaded in 4bit")
else:
if cfg.load_in_8bit:
raise ValueError("Can't load qlora in 8bit")
if cfg.gptq:
raise ValueError("Can't load qlora if gptq")
if not cfg.load_in_4bit:
raise ValueError("Require cfg.load_in_4bit to be True for qlora")
if not cfg.load_in_8bit and cfg.adapter == "lora":
LOG.warning("We recommend setting `load_in_8bit: true` for LORA finetuning")
if cfg.relora_steps:
if cfg.adapter not in ("lora", "qlora"):
raise ValueError("cfg.adapter must be lora or qlora to use ReLoRA")
if cfg.fsdp:
raise ValueError("fsdp not supported with ReLoRA")
if cfg.deepspeed:
raise ValueError("deepspeed not supported with ReLoRA")
if cfg.lr_scheduler == "one_cycle":
raise ValueError("ReLoRA is not compatible with the one_cycle scheduler")
if cfg.trust_remote_code:
LOG.warning(
"`trust_remote_code` is set to true. Please make sure that you reviewed the remote code/model."
)
if cfg.push_dataset_to_hub and cfg.hf_use_auth_token is not True:
raise ValueError(
"Require cfg.hf_use_auth_token to be True for push_dataset_to_hub"
)
if (cfg.base_model and "falcon" in cfg.base_model.lower()) and cfg.fsdp:
raise ValueError("FSDP is not supported for falcon models")
if (
cfg.base_model and "mpt" in cfg.base_model.lower()
) and cfg.gradient_checkpointing:
raise ValueError("gradient_checkpointing is not supported for MPT models")
if cfg.flash_optimum is True:
if cfg.adapter:
LOG.warning("BetterTransformers probably doesn't work with PEFT adapters")
if cfg.fp16 or cfg.bf16:
raise ValueError("AMP is not supported with BetterTransformer")
if cfg.float16 is not True and cfg.bloat16 is not True:
LOG.warning(
"You should probably set bfloat16 or float16 to true to "
"load the model in float16 for BetterTransformers"
)
if int(torch.__version__.split(".", maxsplit=1)[0]) < 2:
LOG.warning("torch>=2.0.0 required")
raise ValueError(
f"flash_optimum for BetterTransformers may not be used with {torch.__version__}"
)
if cfg.pretraining_dataset and cfg.group_by_length:
LOG.warning(
"You probably want to disable group_by_length as it will force a streamed dataset to download completely."
)
if cfg.pretraining_dataset and not cfg.max_steps:
raise ValueError(
"max_steps must be set when using iterable pretraining_dataset, Trainer can't infer length and schedule optimizer/learning rate without it!"
)
if any([cfg.adam_beta1, cfg.adam_beta2, cfg.adam_epsilon]) and (
not cfg.optimizer or "adamw" not in cfg.optimizer
):
LOG.warning("adamw hyperparameters found, but no adamw optimizer set")
if cfg.push_to_hub_model_id:
raise ValueError(
"push_to_hub_model_id is deprecated. Please use hub_model_id instead."
)
if cfg.gptq and cfg.model_revision:
raise ValueError(
"model_revision is not supported for GPTQ models. "
+ "Please download the model from HuggingFace Hub manually for correct branch, "
+ "point to its path, and remove model_revision from the config."
)
if cfg.sample_packing and cfg.sdp_attention:
# incompatible due to bug w/ accelerate causing 0.0 loss when using llama2
raise ValueError(
"sample_packing not compatible with sdp_attention. Use flash_attention"
)
if cfg.sample_packing and cfg.xformers_attention:
raise ValueError(
"sample_packing not compatible with xformers_attention. Use flash_attention"
)
if cfg.early_stopping_patience:
if not cfg.save_steps or not cfg.eval_steps:
raise ValueError(
"`early_stopping_patience` requires save_steps and eval_steps to be set. eval_steps should evenly divide save_steps."
)
if cfg.save_steps % cfg.eval_steps != 0:
raise ValueError(
"`early_stopping_patience` requires that eval_steps should evenly divide save_steps."
)
if cfg.model_type == "MixFormerSequentialForCausalLM" and cfg.adapter is not None:
LOG.warning("Use AutoModelForCausalLM for phi/MixFormer models with qLoRA")
if cfg.model_config_type == "mixformer-sequential":
if cfg.sample_packing:
if cfg.adapter is not None:
LOG.warning(
"phi/MixFormer models are not currently compatible with LoRA and sample_packing"
)
if cfg.model_type == "AutoModelForCausalLM":
raise ValueError(
"`model_type: MixFormerSequentialForCausalLM` required for sample_packing"
)
if cfg.datasets:
for idx, ds_cfg in enumerate(cfg.datasets):
if not ds_cfg.type:
continue
if ds_cfg.type == "sharegpt:chat":
LOG.warning(
PendingDeprecationWarning(
"`type: sharegpt:chat` will soon be deprecated. simply use `type: sharegpt` instead."
)
)
cfg.datasets[idx].type = "sharegpt"
if "sharegpt_simple" in ds_cfg.type:
LOG.warning(
PendingDeprecationWarning(
"`type: sharegpt_simple` will soon be deprecated. simply use `type: sharegpt` instead."
)
)
cfg.datasets[idx].type = cfg.datasets[idx].type.replace(
"sharegpt_simple", "sharegpt"
)
if cfg.save_strategy and cfg.save_steps and cfg.save_strategy != "steps":
raise ValueError(
"save_strategy and save_steps mismatch. Please set save_strategy to 'steps' or remove save_steps."
)
if (
cfg.evaluation_strategy
and cfg.eval_steps
and cfg.evaluation_strategy != "steps"
):
raise ValueError(
"evaluation_strategy and eval_steps mismatch. Please set evaluation_strategy to 'steps' or remove eval_steps."
)
if cfg.val_set_size == 0 and (cfg.eval_steps or cfg.evaluation_strategy):
raise ValueError(
"eval_steps and evaluation_strategy are not supported with val_set_size == 0"
)
# TODO
# MPT 7b
# https://github.com/facebookresearch/bitsandbytes/issues/25
# no 8bit adaAmw w bf16
# GPT-NeoX
# evals broken when extending context len
# File "/root/miniconda3/envs/py3.9/lib/python3.9/site-packages/transformers/models/gpt_neox/modeling_gpt_neox.py", line 162, in forward attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
# File "/root/miniconda3/envs/py3.9/lib/python3.9/site-packages/optimum/bettertransformer/models/attention.py", line 74, in gpt2_wrapped_scaled_dot_product
# attention_mask = causal_mask + attention_mask
# RuntimeError: The size of tensor a (2048) must match the size of tensor b (8132) at non-singleton dimension 3