qwerrwe / src /axolotl /prompt_strategies /alpaca_w_system.py
winglian's picture
Attention mask and position id fixes for packing (#285)
2bb0b78 unverified
raw
history blame
5.38 kB
"""
Prompt strategies loader for alpaca instruction datasets with system prompts
"""
from typing import Generator, Tuple, Union
from axolotl.prompt_tokenizers import PromptTokenizingStrategy
from axolotl.prompters import AlpacaPrompter, PromptStyle
class InstructionWSystemPromptTokenizingStrategy(PromptTokenizingStrategy):
"""
Tokenizing strategy for instruction-based prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str, str]:
return (
prompt["instruction"],
prompt["input"] if "input" in prompt else "",
prompt["output"],
prompt["system"],
)
def tokenize_prompt(self, prompt):
# pylint: disable=duplicate-code
(
instruction,
input, # pylint: disable=redefined-builtin
response,
system,
) = self.parse_instruction_fields(prompt)
user_prompt = next(
iter(
self.prompter.build_prompt_w_system(
system,
instruction,
input,
)
)
)
tokenized_prompt = self._tokenize(user_prompt, add_eos_token=False)
if not self.train_on_inputs:
user_prompt_len = len(tokenized_prompt["input_ids"])
# TODO this could be sped up using numpy array slicing
tokenized_prompt["labels"] = [-100] * user_prompt_len
tokenized_res_prompt = self._tokenize(
response, strip_bos_token=True, add_eos_token=True
)
tokenized_prompt["input_ids"] += tokenized_res_prompt["input_ids"]
tokenized_prompt["attention_mask"] += tokenized_res_prompt["attention_mask"]
tokenized_prompt["labels"] += tokenized_res_prompt["input_ids"]
return tokenized_prompt
class SystemDataPrompter(AlpacaPrompter):
"""
Alpaca Style Prompter that uses system prompts from the dataset
"""
def build_prompt_w_system(
self,
system: str,
instruction: str,
input: Union[None, str] = None, # pylint: disable=redefined-builtin
output: Union[None, str] = None,
) -> Generator[str, None, None]:
# returns the full prompt from instruction and optional input
# if a label (=response, =output) is provided, it's also appended.
formatted_sys_prompt = (
self.system_format.format(system=system)
if system and self.system_format
else ""
)
if input:
res = formatted_sys_prompt + self.turn_format.format(
instruction=instruction, input=input
)
else:
res = formatted_sys_prompt + self.turn_no_input_format.format(
instruction=instruction
)
if output:
res = f"{res}{output}"
yield res
class OpenOrcaSystemDataPrompter(SystemDataPrompter):
"""
Alpaca Style Prompter that uses system prompts from the dataset, with OpenOrca prompts
"""
def match_prompt_style(self):
# pylint: disable=duplicate-code
if self.prompt_style == PromptStyle.INSTRUCT.value:
self.turn_format = "### User:\n{instruction}\n\n### Additional Context:\n{input}\n\n### Assistant:\n"
self.turn_no_input_format = "### User:\n{instruction}\n\n### Assistant:\n"
if self.prompt_style == PromptStyle.CHAT.value:
self.turn_format = "USER: {instruction}\n{input}\nASSISTANT:"
self.turn_no_input_format = "USER: {instruction}\nASSISTANT:"
self.system_format = "SYSTEM: {system}\n"
if self.prompt_style == PromptStyle.CHATML.value:
self.turn_format = "<|im_start|>user\n{instruction}\n{input}<|im_end|>\n<|im_start|>assistant\n"
self.turn_no_input_format = (
"<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
)
self.system_format = "<|im_start|>system\n{system}<|im_end|>\n"
class OpenOrcaPromptTokenizingStrategy(InstructionWSystemPromptTokenizingStrategy):
"""
Tokenizing strategy for OpenOrca datasets
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str, str]:
return (
prompt["question"],
"",
prompt["response"],
prompt["system_prompt"],
)
def load(tokenizer, cfg):
return load_chat(tokenizer, cfg)
def load_instruct(tokenizer, cfg):
return InstructionWSystemPromptTokenizingStrategy(
SystemDataPrompter(PromptStyle.INSTRUCT.value),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
def load_chat(tokenizer, cfg):
return InstructionWSystemPromptTokenizingStrategy(
SystemDataPrompter(PromptStyle.CHAT.value),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
def load_open_orca(tokenizer, cfg):
return OpenOrcaPromptTokenizingStrategy(
OpenOrcaSystemDataPrompter(PromptStyle.INSTRUCT.value),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
def load_open_orca_chatml(tokenizer, cfg):
return OpenOrcaPromptTokenizingStrategy(
OpenOrcaSystemDataPrompter(PromptStyle.CHATML.value),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)