qwerrwe / src /axolotl /monkeypatch /llama_attn_hijack_flash.py
tmm1's picture
standardize attn hijack patches (#381)
06edf17 unverified
raw
history blame
20.7 kB
"""Flash attention monkey patch for llama model"""
# copied from https://github.com/lm-sys/FastChat/blob/main/fastchat/train/llama_flash_attn_monkey_patch.py
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import transformers
from einops import rearrange
from flash_attn.bert_padding import pad_input, unpad_input
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.llama.modeling_llama import (
LlamaDecoderLayer as OriginalLlamaDecoderLayer,
)
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
from axolotl.monkeypatch.utils import get_cu_seqlens_from_pos_ids
try:
from flash_attn.flash_attn_interface import ( # pylint: disable=ungrouped-imports
flash_attn_kvpacked_func,
flash_attn_varlen_kvpacked_func,
flash_attn_varlen_qkvpacked_func,
)
except ImportError:
from flash_attn.flash_attn_interface import (
flash_attn_unpadded_kvpacked_func as flash_attn_varlen_kvpacked_func,
)
from flash_attn.flash_attn_interface import (
flash_attn_unpadded_qkvpacked_func as flash_attn_varlen_qkvpacked_func,
)
def replace_llama_attn_with_flash_attn(packed: Optional[bool] = False):
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = ( # pylint: disable=protected-access
_prepare_decoder_attention_mask
)
transformers.models.llama.modeling_llama.LlamaAttention.forward = flashattn_forward
if packed:
transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer
transformers.models.llama.modeling_llama.LlamaModel.forward = (
llama_model_forward
)
# Disable the transformation of the attention mask in LlamaModel as the flash attention
# requires the attention mask to be the same as the key_padding_mask
def _prepare_decoder_attention_mask(
self,
attention_mask,
input_shape,
inputs_embeds,
past_key_values_length,
): # pylint: disable=unused-argument
# [bsz, seq_len]
return attention_mask
def flashattn_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel
attention_mask: [bsz, q_len]
"""
# pylint: disable=duplicate-code
bsz, q_len, _ = hidden_states.size()
if not hasattr(self, "pretraining_tp"):
self.pretraining_tp = 1
if self.pretraining_tp > 1:
key_value_slicing = (
self.num_key_value_heads * self.head_dim
) // self.pretraining_tp
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [
F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)
]
query_states = torch.cat(query_states, dim=-1)
key_states = [
F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)
]
key_states = torch.cat(key_states, dim=-1)
value_states = [
F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)
]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(
bsz, q_len, self.num_heads, self.head_dim
).transpose(1, 2)
key_states = key_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
value_states = value_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
# [bsz, q_len, nh, hd]
# [bsz, nh, q_len, hd]
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids
)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if output_attentions:
warnings.warn(
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
)
#
# flash-attn v2 start
#
if self.training:
# during training q,k,v always have same seqlen
assert key_states.shape == query_states.shape
is_causal = True
else:
# turn off FA causal mask after first inference autoregressive iteration
# only on first autoregressive step q,k,v have same seqlen
is_causal = past_key_value is not None
if cu_seqlens is not None and max_seqlen is not None:
# special handling using sample packing
qkv = torch.stack(
[query_states, key_states, value_states], dim=2
) # [bsz, nh, 3, q_len, hd]
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
qkv = rearrange(qkv, "b s ... -> (b s) ...")
output = flash_attn_varlen_qkvpacked_func(
qkv, cu_seqlens, max_seqlen, 0.0, softmax_scale=None, causal=is_causal
)
output = rearrange(output, "(b s) ... -> b s ...", b=bsz)
elif query_states.shape == key_states.shape:
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
qkv_unpad, cu_seqlens_q, max_seqlen_q, _, output_pad_fn = generate_qkv(
query_states,
key_states,
value_states,
qkvpacked=True,
# We have disabled _prepare_decoder_attention_mask in LlamaModel
# the attention_mask should be the same as the key_padding_mask
key_padding_mask=attention_mask,
query_padding_mask=attention_mask[:, -query_states.size(1) :]
if attention_mask is not None
else None,
)
output_unpad = flash_attn_varlen_qkvpacked_func(
qkv_unpad,
cu_seqlens_q,
max_seqlen_q,
0.0,
softmax_scale=None,
causal=is_causal,
)
output = output_pad_fn(output_unpad)
else:
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
if attention_mask is None or attention_mask.all().item():
output = flash_attn_kvpacked_func(
query_states,
torch.stack([key_states, value_states], 2),
causal=is_causal,
)
else:
( # pylint: disable=unbalanced-tuple-unpacking
q_unpad,
kv_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
_,
_,
output_pad_fn,
) = generate_qkv(
query_states,
key_states,
value_states,
kvpacked=True,
key_padding_mask=attention_mask,
query_padding_mask=attention_mask[:, -query_states.size(1) :]
if attention_mask is not None
else None,
)
output_unpad = flash_attn_varlen_kvpacked_func(
q_unpad,
kv_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
0.0,
softmax_scale=None,
causal=is_causal,
)
output = output_pad_fn(output_unpad)
attn_output = output
if attn_output.size() != (bsz, q_len, self.num_heads, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, q_len, self.num_heads, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = rearrange(attn_output, "b s h d -> b s (h d)")
#
# flash-attn v2 end
#
if self.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(
self.hidden_size // self.pretraining_tp, dim=1
)
attn_output = sum(
F.linear(attn_output[i], o_proj_slices[i])
for i in range(self.pretraining_tp)
)
else:
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
# based on https://github.com/Dao-AILab/flash-attention/blob/364a5b/tests/test_flash_attn.py#L38
def generate_qkv(
q,
k,
v,
query_padding_mask=None,
key_padding_mask=None,
kvpacked=False,
qkvpacked=False,
): # pylint: disable=invalid-name,unnecessary-lambda-assignment
"""
Arguments:
q: (batch_size, seqlen_q, nheads, d)
k: (batch_size, seqlen_k, nheads_k, d)
v: (batch_size, seqlen_k, nheads_k, d)
query_padding_mask: (batch_size, seqlen), bool
key_padding_mask: (batch_size, seqlen), bool
"""
assert not (kvpacked and qkvpacked)
batch_size, seqlen_q, nheads, d = q.shape
_, seqlen_k, nheads_k, _ = k.shape
assert k.shape == (batch_size, seqlen_k, nheads_k, d)
assert v.shape == (batch_size, seqlen_k, nheads_k, d)
if query_padding_mask is not None:
q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(
q, query_padding_mask
)
output_pad_fn = lambda output_unpad: pad_input( # noqa: E731
output_unpad, indices_q, batch_size, seqlen_q
)
else:
q_unpad = rearrange(q, "b s h d -> (b s) h d")
cu_seqlens_q = torch.arange(
0,
(batch_size + 1) * seqlen_q,
step=seqlen_q,
dtype=torch.int32,
device=q_unpad.device,
)
max_seqlen_q = seqlen_q
output_pad_fn = lambda output_unpad: rearrange( # noqa: E731
output_unpad, "(b s) h d -> b s h d", b=batch_size
)
if key_padding_mask is not None:
k_unpad, _, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
else:
k_unpad = rearrange(k, "b s h d -> (b s) h d")
v_unpad = rearrange(v, "b s h d -> (b s) h d")
cu_seqlens_k = torch.arange(
0,
(batch_size + 1) * seqlen_k,
step=seqlen_k,
dtype=torch.int32,
device=k_unpad.device,
)
max_seqlen_k = seqlen_k
if qkvpacked:
assert nheads == nheads_k
qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
qkv = torch.stack([q, k, v], dim=2)
return (qkv_unpad, cu_seqlens_q, max_seqlen_q, qkv, output_pad_fn)
if kvpacked:
kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
kv = torch.stack([k, v], dim=2)
return (
q_unpad,
kv_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
q,
kv,
output_pad_fn,
)
return (
q_unpad,
k_unpad,
v_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
q,
k,
v,
output_pad_fn,
)
def llama_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
)
if input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError(
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
)
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
cu_seqlens = None
max_seqlen = None
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
cu_seqlens, max_seqlen = get_cu_seqlens_from_pos_ids(position_ids)
cu_seqlens = cu_seqlens.squeeze()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past),
dtype=torch.bool,
device=inputs_embeds.device,
)
attention_mask = (
self._prepare_decoder_attention_mask( # pylint: disable=protected-access
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
transformers.logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
None,
output_attentions,
None,
cu_seqlens,
max_seqlen,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class LlamaDecoderLayer(OriginalLlamaDecoderLayer):
"""
patched version of LlamaDecoderLayer to pass through the precalculated cu_seqlens
"""
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[torch.Tensor] = None,
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cu_seqlens (`torch.Tensor`, *optional*) cumulative sequence len when packing
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs