File size: 7,484 Bytes
ad2b48c 6045345 097d367 ad2b48c 097d367 6045345 097d367 6045345 9105935 0d6708b 9105935 6045345 7748f3d 9105935 7748f3d 9105935 6045345 c0f50d9 7748f3d c0f50d9 7748f3d c0f50d9 7748f3d 29936bb ad2b48c 6045345 097d367 7748f3d 097d367 6045345 550502b 6045345 a10a826 6045345 7748f3d a4329b1 7748f3d 6045345 7748f3d 9105935 247825b 6045345 ad2b48c 7748f3d 0a472e1 7748f3d 0a472e1 7748f3d 0a472e1 7748f3d 6045345 9105935 6045345 9105935 6045345 94f5e41 0d6708b 6045345 94f5e41 6045345 cc77bab 6045345 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import importlib
import math
import os
import sys
from pathlib import Path
import bitsandbytes as bnb
import torch.cuda
import transformers
from torch import nn
from torch.optim.lr_scheduler import OneCycleLR
from transformers import EarlyStoppingCallback
from transformers.trainer_pt_utils import get_parameter_names
from axolotl.utils.schedulers import InterpolatingLogScheduler
from axolotl.utils.callbacks import SavePeftModelCallback
def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
total_num_steps = int(
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
)
warmup_steps = (
cfg.warmup_steps
if cfg.warmup_steps is not None
else min(int(0.03 * total_num_steps), 100)
)
logging_steps = (
cfg.logging_steps
if cfg.logging_steps is not None
else max(min(int(0.005 * total_num_steps), 10), 1)
)
save_steps = (
cfg.save_steps
if cfg.save_steps is not None
else min(int(0.05 * total_num_steps), 200)
)
eval_steps = (
cfg.eval_steps
if cfg.eval_steps is not None and save_steps % cfg.eval_steps == 0
else save_steps
)
training_arguments_kwargs = {}
if cfg.bf16 == "full":
training_arguments_kwargs["bf16_full_eval"] = True
else:
training_arguments_kwargs["bf16"] = cfg.bf16
training_arguments_kwargs["tf32"] = cfg.tf32
training_arguments_kwargs["warmup_steps"] = warmup_steps
training_arguments_kwargs["logging_steps"] = logging_steps
if cfg.gradient_checkpointing is not None:
if cfg.load_4bit:
from alpaca_lora_4bit.gradient_checkpointing import (
apply_gradient_checkpointing,
)
gradient_checkpointing_ratio = (
cfg.gradient_checkpointing_ratio
if cfg.gradient_checkpointing_ratio
else 1.0
)
apply_gradient_checkpointing(
model, checkpoint_ratio=gradient_checkpointing_ratio
)
else:
training_arguments_kwargs[
"gradient_checkpointing"
] = cfg.gradient_checkpointing
if cfg.fsdp:
training_arguments_kwargs["fsdp"] = cfg.fsdp
if cfg.fsdp_config:
training_arguments_kwargs["fsdp_config"] = dict(cfg.fsdp_config)
# deepspeed
if (
os.environ.get("ACCELERATE_USE_DEEPSPEED") == "true"
and torch.cuda.device_count() > 1
):
if cfg.deepspeed:
training_arguments_kwargs["deepspeed"] = cfg.deepspeed
else:
# make a guess here
# TODO search Path("./") for one
training_arguments_kwargs["deepspeed"] = "./ds_config.json"
training_args = transformers.TrainingArguments(
per_device_train_batch_size=cfg.micro_batch_size,
per_device_eval_batch_size=cfg.eval_batch_size if cfg.eval_batch_size is not None else cfg.micro_batch_size,
gradient_accumulation_steps=cfg.gradient_accumulation_steps,
eval_accumulation_steps=cfg.gradient_accumulation_steps,
num_train_epochs=cfg.num_epochs,
learning_rate=cfg.learning_rate,
evaluation_strategy="steps" if cfg.val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=eval_steps if cfg.val_set_size > 0 else None,
save_steps=save_steps,
output_dir=cfg.output_dir,
save_total_limit=3,
load_best_model_at_end=True
if cfg.val_set_size > 0 and save_steps % eval_steps == 0 and cfg.load_in_8bit is not True
else False,
ddp_find_unused_parameters=False if cfg.ddp else None,
group_by_length=cfg.group_by_length,
report_to="wandb" if cfg.use_wandb else None,
run_name=cfg.wandb_run_id if cfg.use_wandb else None,
optim=cfg.optimizer if cfg.optimizer else None,
lr_scheduler_type=cfg.lr_scheduler if cfg.lr_scheduler not in ("one_cycle", "log_sweep") else "cosine",
weight_decay=cfg.weight_decay if cfg.weight_decay is not None else 0.0,
**training_arguments_kwargs,
)
trainer_kwargs = {}
if cfg.optimizer == "adamw_anyprecision":
if Path(cfg.torchdistx_path).exists():
sys.path.append(cfg.torchdistx_path)
importlib.import_module("torchdistx")
if (
cfg.optimizer == "adamw_bnb_8bit"
and not cfg.load_4bit
and not "deepspeed" in training_arguments_kwargs
):
decay_parameters = get_parameter_names(model, [nn.LayerNorm])
decay_parameters = [name for name in decay_parameters if "bias" not in name]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in model.named_parameters()
if (n in decay_parameters and p.requires_grad)
],
"weight_decay": training_args.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if (n not in decay_parameters and p.requires_grad)
],
"weight_decay": 0.0,
},
]
optimizer = bnb.optim.Adam8bit(
optimizer_grouped_parameters,
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
lr=training_args.learning_rate,
)
if cfg.lr_scheduler == "one_cycle":
lr_scheduler_kwargs = (
cfg.lr_scheduler_kwargs if cfg.lr_scheduler_kwargs else {}
)
lr_scheduler = OneCycleLR(
optimizer,
cfg.learning_rate,
total_steps=total_num_steps,
epochs=cfg.num_epochs,
**lr_scheduler_kwargs,
)
elif cfg.lr_scheduler == "log_sweep":
lr_scheduler = InterpolatingLogScheduler(
optimizer,
cfg.warmup_steps,
cfg.log_sweep_min_lr if cfg.log_sweep_min_lr else 1e-10,
cfg.log_sweep_max_lr if cfg.log_sweep_max_lr else 10,
)
else:
lr_scheduler = transformers.get_cosine_schedule_with_warmup(
optimizer,
training_args.warmup_steps,
total_num_steps,
)
trainer_kwargs["optimizers"] = (optimizer, lr_scheduler)
# TODO on_save callback to sync checkpoints to GCP/AWS in background
if cfg.early_stopping_patience:
early_stop_cb = EarlyStoppingCallback(
cfg.early_stopping_patience,
)
trainer_kwargs["callbacks"] = [early_stop_cb]
data_collator_kwargs = {
"padding": True,
}
if cfg.collator_pad_to_longest:
data_collator_kwargs["padding"] = "longest"
else:
data_collator_kwargs["pad_to_multiple_of"] = 8
callbacks = []
if cfg.adapter == 'lora':
callbacks.append(SavePeftModelCallback)
trainer = transformers.Trainer(
model=model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
args=training_args,
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer,
return_tensors="pt",
**data_collator_kwargs,
),
callbacks=callbacks,
**trainer_kwargs,
)
return trainer
|