File size: 9,732 Bytes
2bb0b78 40a6362 2bb0b78 40a6362 2bb0b78 40a6362 2bb0b78 641e6f7 00568c1 40a6362 6910e6a 00568c1 6910e6a 40a6362 553c80f 5aa5097 553c80f 5aa5097 0298273 5aa5097 553c80f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
"""
DataCollator for axolotl to pad labels and position_ids for packed sequences
"""
from dataclasses import dataclass
from typing import Any, Dict, Optional, Sequence, Union
import numpy as np
import torch
import transformers
from transformers import PreTrainedTokenizerBase
from transformers.utils import PaddingStrategy
IGNORE_INDEX = -100
@dataclass
class DataCollatorForSeq2Seq:
"""
Data collator that will dynamically pad the inputs received, as well as the labels and position_ids
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
model ([`PreTrainedModel`]):
The model that is being trained. If set and has the *prepare_decoder_input_ids_from_labels*, use it to
prepare the *decoder_input_ids*
This is useful when using *label_smoothing* to avoid calculating loss twice.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
sequence is provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
label_pad_token_id (`int`, *optional*, defaults to -100):
The id to use when padding the labels (-100 will be automatically ignored by PyTorch loss functions).
return_tensors (`str`):
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
"""
tokenizer: PreTrainedTokenizerBase
model: Optional[Any] = None
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
label_pad_token_id: int = -100
position_pad_token_id: int = 0
return_tensors: str = "pt"
def __call__(self, features, return_tensors=None):
labels = None
if return_tensors is None:
return_tensors = self.return_tensors
for feature_name, pad_token_id in [
("labels", self.label_pad_token_id),
("position_ids", self.position_pad_token_id),
]:
feat = (
[feature[feature_name] for feature in features]
if feature_name in features[0].keys()
else None
)
labels = feat if feat and feature_name == "labels" else labels
# We have to pad the labels before calling `tokenizer.pad` as this method won't pad them and needs them of the
# same length to return tensors.
if feat is not None:
max_feature_length = max(len(l) for l in feat) # noqa: E741
if self.pad_to_multiple_of is not None:
max_feature_length = (
(max_feature_length + self.pad_to_multiple_of - 1)
// self.pad_to_multiple_of
* self.pad_to_multiple_of
)
padding_side = self.tokenizer.padding_side
for feature in features:
remainder = [pad_token_id] * (
max_feature_length - len(feature[feature_name])
)
if isinstance(feature[feature_name], list):
feature[feature_name] = (
feature[feature_name] + remainder
if padding_side == "right"
else remainder + feature[feature_name]
)
elif padding_side == "right":
feature[feature_name] = np.concatenate(
[feature[feature_name], remainder]
).astype(np.int64)
else:
feature[feature_name] = np.concatenate(
[remainder, feature[feature_name]]
).astype(np.int64)
features = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=return_tensors,
)
# prepare decoder_input_ids
if (
labels is not None
and self.model is not None
and hasattr(self.model, "prepare_decoder_input_ids_from_labels")
):
decoder_input_ids = self.model.prepare_decoder_input_ids_from_labels(
labels=features["labels"]
)
features["decoder_input_ids"] = decoder_input_ids
return features
@dataclass
class BatchSamplerDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
"""
Collator for multipack specific to the using the BatchSampler
"""
def __call__(self, features, return_tensors=None):
if not isinstance(features[0], list):
features = [features]
out_features = [{} for _ in features]
for i, features_ in enumerate(features):
for feature in features_[0].keys():
if feature == "length":
continue
if feature == "attention_mask":
arrays = [
(1) * np.array(item[feature])
for i, item in enumerate(features_)
if feature in item
]
out_features[i][feature] = np.concatenate(arrays)
else:
arrays = [
np.array(item[feature]) for item in features_ if feature in item
]
out_features[i][feature] = np.concatenate(arrays)
return super().__call__(out_features, return_tensors=return_tensors)
@dataclass
class V2BatchSamplerDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
"""
Collator for multipack specific to the using the BatchSampler
"""
def __call__(self, features, return_tensors=None):
if not isinstance(features[0], list):
features = [features]
out_features = [{} for _ in features]
for i, features_ in enumerate(features):
for feature in features_[0].keys():
if feature == "length":
continue
if feature == "attention_mask":
arrays = [
(i + 1) * np.array(item[feature])
for i, item in enumerate(features_)
if feature in item
]
out_features[i][feature] = np.concatenate(arrays)
else:
arrays = [
np.array(item[feature]) for item in features_ if feature in item
]
out_features[i][feature] = np.concatenate(arrays)
return super().__call__(out_features, return_tensors=return_tensors)
@dataclass
class MambaDataCollator:
"""
Collator for State Space Models (Mamba)
"""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple(
[torch.LongTensor(instance[key]) for instance in instances]
for key in ("input_ids", "labels")
)
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids,
batch_first=True,
padding_value=self.tokenizer.pad_token_id,
)
labels = torch.nn.utils.rnn.pad_sequence(
labels, batch_first=True, padding_value=IGNORE_INDEX
)
return {
"input_ids": input_ids,
"labels": labels,
}
@dataclass
class PretrainingBatchSamplerDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
"""
Collator for multipack specific to the using the BatchSampler
"""
def __init__(self, *args, multipack_attn=True, **kwargs):
super().__init__(*args, **kwargs)
self.multipack_attn = multipack_attn
def __call__(self, features, return_tensors=None):
chunked_data = {}
for feature in features.keys():
if feature == "length":
continue
if feature == "attention_mask":
if self.multipack_attn:
arrays = [
(i + 1) * np.array(item)
for i, item in enumerate(features[feature])
]
else:
arrays = [(1) * np.array(item) for item in features[feature]]
chunked_data[feature] = np.concatenate(arrays)
else:
arrays = [np.array(item) for item in features[feature]]
chunked_data[feature] = np.concatenate(arrays)
features = [chunked_data]
return super().__call__(features, return_tensors=return_tensors)
|