File size: 3,002 Bytes
ca84cca
 
 
 
0865613
ca84cca
0ce1a65
ca84cca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d8def6
 
 
 
 
 
 
0ce1a65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0865613
 
 
 
 
 
 
 
 
 
782b6a4
0865613
 
 
 
 
782b6a4
0865613
 
 
 
 
782b6a4
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
Test classes for checking functionality of the cfg normalization
"""
import unittest
from unittest.mock import patch

from axolotl.utils.config import normalize_cfg_datasets, normalize_config
from axolotl.utils.dict import DictDefault


class NormalizeConfigTestCase(unittest.TestCase):
    """
    test class for normalize_config checks
    """

    def _get_base_cfg(self):
        return DictDefault(
            {
                "base_model": "JackFram/llama-68m",
                "base_model_config": "JackFram/llama-68m",
                "tokenizer_type": "LlamaTokenizer",
                "num_epochs": 1,
                "micro_batch_size": 1,
                "gradient_accumulation_steps": 1,
            }
        )

    def test_lr_as_float(self):
        cfg = (
            self._get_base_cfg()
            | DictDefault(  # pylint: disable=unsupported-binary-operation
                {
                    "learning_rate": "5e-5",
                }
            )
        )

        normalize_config(cfg)

        assert cfg.learning_rate == 0.00005

    def test_base_model_config_set_when_empty(self):
        cfg = self._get_base_cfg()
        del cfg.base_model_config
        normalize_config(cfg)

        assert cfg.base_model_config == cfg.base_model

    def test_chat_template_chatml(self):
        cfg = DictDefault(
            {
                "chat_template": "chatml",
                "datasets": [
                    {
                        "path": "lorem/ipsum",
                        "type": "sharegpt",
                        "conversation": "vicuna_v1.1",
                    },
                    {
                        "path": "sit/amet",
                        "type": "sharegpt",
                    },
                ],
            }
        )

        normalize_cfg_datasets(cfg)

        assert cfg.datasets[0].conversation == "vicuna_v1.1"
        assert cfg.datasets[1].conversation == "chatml"

    @patch("axolotl.utils.config.is_torch_bf16_gpu_available")
    def test_bf16_auto_setter_available(self, mock_bf16_avail):
        cfg = self._get_base_cfg()
        cfg.bf16 = "auto"
        mock_bf16_avail.return_value = True

        normalize_config(cfg)

        self.assertTrue(cfg.bf16)
        self.assertFalse(cfg.fp16)

    @patch("axolotl.utils.config.is_torch_bf16_gpu_available")
    def test_bf16_auto_setter_not_available(self, mock_bf16_avail):
        cfg = self._get_base_cfg()
        cfg.bf16 = "auto"
        cfg.fp16 = None
        mock_bf16_avail.return_value = False

        normalize_config(cfg)

        self.assertFalse(cfg.bf16)
        self.assertTrue(cfg.fp16)

    @patch("axolotl.utils.config.is_torch_bf16_gpu_available")
    def test_bf16_disables_fp16(self, mock_bf16_avail):
        cfg = self._get_base_cfg()
        cfg.bf16 = True
        cfg.fp16 = False
        mock_bf16_avail.return_value = True

        normalize_config(cfg)

        self.assertTrue(cfg.bf16)
        self.assertFalse(cfg.fp16)