File size: 12,901 Bytes
6045345
 
 
 
2bc1a5b
 
 
 
 
9493b1b
2bc1a5b
8d43785
2809f3f
6045345
 
4ea9a66
6045345
 
 
 
 
cf68153
 
1365073
 
 
6045345
 
 
 
 
cf68153
 
1365073
 
 
6045345
 
 
9493b1b
2809f3f
6045345
 
 
4a17a4c
6045345
 
2809f3f
6045345
 
 
 
 
 
 
 
1d5ab84
 
 
 
607a4d3
1d5ab84
 
6045345
1d5ab84
 
 
aa3c3f9
6045345
 
 
097d367
6045345
 
 
8d43785
6045345
 
0f74464
6045345
 
 
 
 
 
 
0f74464
6045345
 
8d43785
0f74464
8d43785
0f74464
6045345
2bc1a5b
 
 
0f74464
8d43785
 
1d5ab84
4ea9a66
1d5ab84
 
4ea9a66
 
 
 
6045345
1d5ab84
6045345
 
 
1d5ab84
b46bc02
1d5ab84
b46bc02
 
 
1d5ab84
1365073
1d5ab84
1365073
 
 
1d5ab84
1365073
1d5ab84
1365073
 
 
1d5ab84
a12fb0a
1d5ab84
a12fb0a
 
 
1d5ab84
6045345
1d5ab84
6045345
 
 
1d5ab84
6045345
1d5ab84
6045345
 
 
 
 
 
1d5ab84
6045345
1d5ab84
6045345
 
 
 
 
 
1d5ab84
6045345
1d5ab84
6045345
 
 
1d5ab84
cf68153
 
 
 
 
 
 
 
6045345
 
4a17a4c
6045345
4a17a4c
 
 
 
6045345
2bc1a5b
 
 
6045345
1d5ab84
 
 
 
 
6045345
aa3c3f9
 
 
9493b1b
aa3c3f9
 
 
 
 
 
 
2809f3f
4a17a4c
aa3c3f9
1d5ab84
aa3c3f9
 
 
 
 
 
1d5ab84
aa3c3f9
2809f3f
aa3c3f9
 
 
 
 
 
 
 
 
1d5ab84
 
 
 
98a6781
1d5ab84
 
607a4d3
1d5ab84
 
 
 
 
 
aa3c3f9
 
 
 
 
2809f3f
 
 
 
 
aa3c3f9
 
 
 
 
1d5ab84
 
 
aa3c3f9
 
 
 
 
 
 
 
 
 
0d28df0
 
 
 
 
 
 
 
 
 
 
 
aa3c3f9
 
 
 
 
1d5ab84
 
 
 
 
aa3c3f9
 
 
4a17a4c
aa3c3f9
097d367
2bc1a5b
 
 
 
 
 
097d367
2bc1a5b
6045345
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import logging
from hashlib import md5
from pathlib import Path

from datasets import (
    load_from_disk,
    load_dataset,
    IterableDataset,
    Dataset,
    concatenate_datasets, DatasetDict,
)
from huggingface_hub import hf_hub_download
from transformers import PreTrainedTokenizerBase

from axolotl.datasets import TokenizedPromptDataset, ConstantLengthDataset
from axolotl.prompt_strategies import load
from axolotl.prompt_tokenizers import (
    AlpacaPromptTokenizingStrategy,
    GPTeacherPromptTokenizingStrategy,
    OpenAssistantPromptTokenizingStrategy,
    AlpacaReflectionPTStrategy,
    ShareGPTPromptTokenizingStrategy,
    JeopardyPromptTokenizingStrategy,
    CompletionPromptTokenizingStrategy,
    AlpacaMultipleChoicePromptTokenizingStrategy,
    SummarizeTLDRPromptTokenizingStrategy,
)
from axolotl.prompters import (
    AlpacaPrompter,
    GPTeacherPrompter,
    ReflectAlpacaPrompter,
    ShareGPTPrompter,
    JeopardyPrompter,
    CompletionPrompter,
    MultipleChoiceExplainPrompter,
    SummarizeTLDRPrompter, MultipleChoiceConcisePrompter,
)


def load_tokenized_prepared_datasets(tokenizer, cfg, default_dataset_prepared_path) -> DatasetDict:
    tokenizer_name = tokenizer.__class__.__name__
    ds_hash = str(
        md5(
            (
                str(cfg.sequence_len)
                + "@"
                + "|".join(sorted([f"{d.path}:{d.type}" for d in cfg.datasets]))
                + "|" + tokenizer_name
            ).encode("utf-8")
        ).hexdigest()
    )
    prepared_ds_path = (
        Path(cfg.dataset_prepared_path) / ds_hash
        if cfg.dataset_prepared_path
        else Path(default_dataset_prepared_path) / ds_hash
    )
    dataset = None
    try:
        if cfg.push_dataset_to_hub:
            dataset = load_dataset(f"{cfg.push_dataset_to_hub}/{ds_hash}", use_auth_token=True)
            dataset = dataset["train"]
    except:
        pass

    if dataset:
        ...
    elif any(prepared_ds_path.glob("*")):
        logging.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
        dataset = load_from_disk(str(prepared_ds_path))
        logging.info("Prepared dataset loaded from disk...")
    else:
        logging.info(f"Unable to find prepared dataset in {prepared_ds_path}")
        logging.info("Loading raw datasets...")
        datasets = []
        for d in cfg.datasets:
            ds = None
            ds_from_hub = False
            try:
                load_dataset(d.path, streaming=True, use_auth_token=True)
                ds_from_hub = True
            except FileNotFoundError:
                pass

            # prefer local dataset, even if hub exists
            if Path(d.path).exists():
                ds: IterableDataset = load_dataset(
                    "json", data_files=d.path, streaming=False, split=None
                )
            elif ds_from_hub:
                if d.data_files:
                    ds = load_dataset(d.path, streaming=False, data_files=d.data_files, use_auth_token=True)
                else:
                    ds = load_dataset(d.path, streaming=False, use_auth_token=True)
            else:
                fp = hf_hub_download(
                    repo_id=d.path, repo_type="dataset", filename=d.data_files
                )
                ds = load_dataset("json", data_files=fp, streaming=False, split=None)
            if not ds:
                raise Exception("unhandled dataset load")
            d_type = d.type
            d_type_split = d_type.split(":")
            d_base_type = d_type_split[0]
            d_prompt_style = d_type_split[1] if len(d_type_split) > 1 else None
            if (ds_strategy := load(d.type, tokenizer, cfg)):
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            elif d_base_type == "alpaca":
                ds_strategy = AlpacaPromptTokenizingStrategy(
                    AlpacaPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            elif d_base_type == "explainchoice":
                ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy(
                    MultipleChoiceExplainPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            elif d_base_type == "concisechoice":
                ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy(
                    MultipleChoiceConcisePrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            elif d_base_type == "summarizetldr":
                ds_strategy = SummarizeTLDRPromptTokenizingStrategy(
                    SummarizeTLDRPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            elif d_base_type == "jeopardy":
                ds_strategy = JeopardyPromptTokenizingStrategy(
                    JeopardyPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            elif d_base_type == "oasst":
                ds_strategy = OpenAssistantPromptTokenizingStrategy(
                    AlpacaPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            elif d_base_type == "gpteacher":
                ds_strategy = GPTeacherPromptTokenizingStrategy(
                    GPTeacherPrompter(d_prompt_style),
                    tokenizer,
                    cfg.train_on_inputs,
                    cfg.sequence_len,
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            elif d_base_type == "reflection":
                ds_strategy = AlpacaReflectionPTStrategy(
                    ReflectAlpacaPrompter(d_prompt_style),
                    tokenizer,
                    cfg.train_on_inputs,
                    cfg.sequence_len,
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            elif d_base_type == "sharegpt":
                ds_strategy = ShareGPTPromptTokenizingStrategy(
                    ShareGPTPrompter(d_prompt_style), tokenizer, cfg.train_on_inputs, cfg.sequence_len
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            elif d_base_type == "completion":
                ds_strategy = CompletionPromptTokenizingStrategy(
                    CompletionPrompter(),
                    tokenizer,
                    cfg.train_on_inputs,
                    cfg.sequence_len,
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            else:
                logging.error(f"unhandled prompt tokenization strategy: {d.type}")
        logging.info("tokenizing, merging, and shuffling master dataset")

        samples = []
        for d in datasets:
            samples = samples + [i for i in d]
        dataset = Dataset.from_list(samples).shuffle(seed=42)
        if cfg.local_rank == 0:
            logging.info(
                f"Saving merged prepared dataset to disk... {prepared_ds_path}"
            )
            dataset.save_to_disk(prepared_ds_path)
            if cfg.push_dataset_to_hub:
                logging.info(
                    f"Saving merged prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
                )
                dataset.push_to_hub(f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True)

    return dataset


def load_prepare_datasets(tokenizer: PreTrainedTokenizerBase, cfg, default_dataset_prepared_path) -> (Dataset, Dataset):
    max_packed_sequence_len = (
        cfg.max_packed_sequence_len if cfg.max_packed_sequence_len else cfg.sequence_len
    )
    max_packed_sequence_len = min(
        max_packed_sequence_len, cfg.sequence_len
    )  # make sure we don't accidentally set it larger than sequence_len

    tokenizer_name = tokenizer.__class__.__name__
    if cfg.max_packed_sequence_len is not None:
        # see if we can go ahead and load the stacked dataset
        seed = f"@{str(cfg.seed)}" if cfg.seed else ""
        ds_hash = str(
            md5(
                (
                    str(cfg.sequence_len)
                    + "@"
                    + str(max_packed_sequence_len)
                    + seed
                    + "|".join(sorted([f"{d.path}:{d.type}" for d in cfg.datasets]))
                    + "|" + tokenizer_name
                ).encode("utf-8")
            ).hexdigest()
        )
        prepared_ds_path = (
            Path(cfg.dataset_prepared_path) / ds_hash
            if cfg.dataset_prepared_path
            else Path(default_dataset_prepared_path) / ds_hash
        )

        dataset = None
        try:
            if cfg.push_dataset_to_hub:
                logging.info(
                    f"Checking for packed prepared dataset from hub... {cfg.push_dataset_to_hub}/{ds_hash}"
                )
                dataset = load_dataset(f"{cfg.push_dataset_to_hub}/{ds_hash}", use_auth_token=True)
                dataset = dataset["train"]
        except:
            pass

        if dataset:
            ...
        elif any(prepared_ds_path.glob("*")):
            logging.info(
                f"Loading prepared packed dataset from disk at {prepared_ds_path}..."
            )
            dataset = load_from_disk(str(prepared_ds_path))
            logging.info("Prepared packed dataset loaded from disk...")
            if cfg.push_dataset_to_hub:
                logging.info(
                    f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
                )
                dataset.push_to_hub(f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True)
        else:
            dataset = load_tokenized_prepared_datasets(
                tokenizer, cfg, default_dataset_prepared_path
            )

            if cfg.seed:
                dataset = dataset.shuffle(seed=cfg.seed)

            constant_len_dataset = ConstantLengthDataset(
                tokenizer,
                [dataset],
                seq_length=max_packed_sequence_len,
            )
            logging.info(
                f"packing master dataset to len: {cfg.max_packed_sequence_len}"
            )
            dataset = Dataset.from_list([_ for _ in constant_len_dataset])

            # filter out bad data
            dataset = Dataset.from_list(
                [
                    d
                    for d in dataset
                    if len(d["input_ids"]) < cfg.sequence_len
                       and len(d["input_ids"]) > 0
                       and len(d["input_ids"]) == len(d["attention_mask"])
                       and len(d["input_ids"]) == len(d["labels"])
                ]
            )

            if cfg.local_rank == 0:
                logging.info(
                    f"Saving packed prepared dataset to disk... {prepared_ds_path}"
                )
                dataset.save_to_disk(prepared_ds_path)
                if cfg.push_dataset_to_hub:
                    logging.info(
                        f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
                    )
                    dataset.push_to_hub(f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True)
    else:
        dataset = load_tokenized_prepared_datasets(
            tokenizer, cfg, default_dataset_prepared_path
        )

    if cfg.dataset_shard_num and cfg.dataset_shard_idx is not None:
        logging.info(
            f"Using index #{cfg.dataset_shard_idx} of {cfg.dataset_shard_num} shards"
        )
        dataset = dataset.shard(
            num_shards=cfg.dataset_shard_num, index=cfg.dataset_shard_idx
        )

    dataset = dataset.train_test_split(test_size=cfg.val_set_size, shuffle=False)
    train_dataset = dataset["train"]
    eval_dataset = dataset["test"]

    return train_dataset, eval_dataset