File size: 6,799 Bytes
6045345
 
 
 
097d367
8d43785
6045345
 
 
 
 
 
 
cf68153
 
 
6045345
 
 
 
 
cf68153
 
 
6045345
 
 
 
 
 
 
 
 
 
 
 
 
4a17a4c
6045345
 
 
 
 
 
 
 
 
 
 
 
097d367
6045345
 
 
097d367
6045345
 
 
8d43785
6045345
 
 
 
 
 
 
 
 
 
 
 
 
8d43785
 
 
 
6045345
8d43785
 
 
 
6045345
 
 
 
 
 
 
a27d594
a12fb0a
 
 
 
 
6045345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf68153
 
 
 
 
 
 
 
 
6045345
 
4a17a4c
6045345
4a17a4c
 
 
 
6045345
097d367
6045345
 
4a17a4c
 
 
 
 
 
 
 
097d367
 
 
 
 
4f2584f
 
 
6045345
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import logging
from hashlib import md5
from pathlib import Path

from datasets import load_from_disk, load_dataset, IterableDataset, Dataset, concatenate_datasets
from huggingface_hub import hf_hub_download

from axolotl.datasets import TokenizedPromptDataset, ConstantLengthDataset
from axolotl.prompt_tokenizers import (
    AlpacaPromptTokenizingStrategy,
    GPTeacherPromptTokenizingStrategy,
    OpenAssistantPromptTokenizingStrategy,
    AlpacaReflectionPTStrategy,
    ShareGPTPromptTokenizingStrategy,
    JeopardyPromptTokenizingStrategy,
    CompletionPromptTokenizingStrategy,
)
from axolotl.prompters import (
    AlpacaPrompter,
    GPTeacherPrompter,
    ReflectAlpacaPrompter,
    ShareGPTPrompter,
    JeopardyPrompter,
    CompletionPrompter,
)


def load_prepare_datasets(tokenizer, cfg, default_dataset_prepared_path):
    max_packed_sequence_len = (
        cfg.max_packed_sequence_len if cfg.max_packed_sequence_len else cfg.sequence_len
    )
    max_packed_sequence_len = min(
        max_packed_sequence_len, cfg.sequence_len
    )  # make sure we don't accidentally set it larger than sequence_len
    ds_hash = str(
        md5(
            (
                str(cfg.sequence_len)
                + "@"
                + "|".join(sorted([f"{d.path}:{d.type}" for d in cfg.datasets]))
            ).encode("utf-8")
        ).hexdigest()
    )
    prepared_ds_path = (
        Path(cfg.dataset_prepared_path) / ds_hash
        if cfg.dataset_prepared_path
        else Path(default_dataset_prepared_path) / ds_hash
    )

    if any(prepared_ds_path.glob("*")):
        logging.info(f"Loading prepared dataset from disk ay {prepared_ds_path}...")
        dataset = load_from_disk(str(prepared_ds_path))
        logging.info("Prepared dataset loaded from disk...")
    else:
        logging.info(f"Unable to find prepared dataset in {prepared_ds_path}")
        logging.info("Loading raw datasets...")
        datasets = []
        for d in cfg.datasets:
            ds = None
            ds_from_hub = False
            try:
                load_dataset(d.path, streaming=True)
                ds_from_hub = True
            except FileNotFoundError:
                pass

            # prefer local dataset, even if hub exists
            if Path(d.path).exists():
                ds: IterableDataset = load_dataset(
                    "json", data_files=d.path, streaming=True, split=None
                )
            elif ds_from_hub:
                if d.data_files:
                    ds = load_dataset(d.path, streaming=True, data_files=d.data_files)
                else:
                    ds = load_dataset(d.path, streaming=True)
            else:
                fp = hf_hub_download(repo_id=d.path, repo_type="dataset", filename=d.data_files)
                ds = load_dataset("json", data_files=fp, streaming=True, split=None)
            if not ds:
                raise Exception("unhandled dataset load")

            if d.type == "alpaca":
                ds_strategy = AlpacaPromptTokenizingStrategy(
                    AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            elif d.type == "jeopardy":
                ds_strategy = JeopardyPromptTokenizingStrategy(
                    JeopardyPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            elif d.type == "oasst":
                ds_strategy = OpenAssistantPromptTokenizingStrategy(
                    AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            elif d.type == "gpteacher":
                ds_strategy = GPTeacherPromptTokenizingStrategy(
                    GPTeacherPrompter(),
                    tokenizer,
                    cfg.train_on_inputs,
                    cfg.sequence_len,
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            elif d.type == "reflection":
                ds_strategy = AlpacaReflectionPTStrategy(
                    ReflectAlpacaPrompter(),
                    tokenizer,
                    cfg.train_on_inputs,
                    cfg.sequence_len,
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            elif d.type == "sharegpt":
                ds_strategy = ShareGPTPromptTokenizingStrategy(
                    ShareGPTPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            elif d.type == "completion":
                ds_strategy = CompletionPromptTokenizingStrategy(
                    CompletionPrompter(),
                    tokenizer,
                    cfg.train_on_inputs,
                    cfg.sequence_len,
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
                datasets.append(ds_wrapper)
            else:
                logging.error(f"unhandled prompt tokenization strategy: {d.type}")
        logging.info("tokenizing, merging, and shuffling master dataset")

        samples = []
        for d in datasets:
            samples = samples + [i for i in d]
        dataset = Dataset.from_list(samples).shuffle(seed=42)
        if cfg.local_rank == 0:
            logging.info(f"Saving merged prepared dataset to disk... {prepared_ds_path}")
            dataset.save_to_disk(prepared_ds_path)

    if cfg.max_packed_sequence_len is not None:
        constant_len_dataset = ConstantLengthDataset(
            tokenizer,
            [dataset],
            seq_length=max_packed_sequence_len,
        )
        logging.info(f"packing master dataset to len: {cfg.max_packed_sequence_len}")
        dataset = Dataset.from_list([_ for _ in constant_len_dataset])

    if cfg.dataset_shard_num and cfg.dataset_shard_idx is not None:
        logging.info(f"Using index #{cfg.dataset_shard_idx} of {cfg.dataset_shard_num} shards")
        dataset = dataset.shard(num_shards=cfg.dataset_shard_num, index=cfg.dataset_shard_idx)

    dataset = dataset.train_test_split(
        test_size=cfg.val_set_size, shuffle=False
    )
    train_dataset = dataset["train"]
    eval_dataset = dataset["test"]

    return train_dataset, eval_dataset