File size: 9,285 Bytes
2ea70eb 7803f09 2ea70eb 7d1d22f 2ea70eb 7d1d22f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
"""chatml prompt tokenization strategy for ORPO"""
from typing import Any, Dict, Generator, List, Optional, Tuple
from pydantic import BaseModel
from axolotl.prompt_tokenizers import IGNORE_INDEX, PromptTokenizingStrategy
from axolotl.prompters import Prompter
from axolotl.utils.chat_templates import chat_templates
class Message(BaseModel):
"""message/turn"""
role: str
content: str
label: Optional[bool] = None
class MessageList(BaseModel):
"""conversation"""
messages: List[Message]
def load(
tokenizer, cfg, ds_cfg: Optional[Dict[str, Any]] = None, **kwargs
): # pylint: disable=possibly-unused-variable,unused-argument
"""
chatml transforms for datasets with system, input, chosen, rejected
"""
chat_template = chat_templates("chatml")
if ds_cfg and "chat_template" in ds_cfg:
chat_template = ds_cfg["chat_template"]
try:
chat_template = chat_templates(chat_template)
except ValueError:
pass
tokenizer.chat_template = chat_template
return ORPOTokenizingStrategy(
ORPOPrompter(chat_template, tokenizer),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
dataset_parser=ORPODatasetParsingStrategy(),
)
class ORPODatasetParsingStrategy:
"""Strategy to parse chosen rejected dataset into messagelist"""
def get_chosen_conversation_thread(self, prompt) -> MessageList:
"""Dataset structure mappings"""
messages: List[Message] = []
if system := prompt.get("system", None):
messages.append(Message(role="system", content=system, label=False))
messages.append(Message(role="user", content=prompt["prompt"], label=False))
messages.append(
Message(
role="assistant", content=prompt["chosen"][1]["content"], label=True
)
)
return MessageList(messages=messages)
def get_rejected_conversation_thread(self, prompt) -> MessageList:
"""Dataset structure mappings"""
messages: List[Message] = []
if system := prompt.get("system", None):
messages.append(Message(role="system", content=system, label=False))
messages.append(Message(role="user", content=prompt["prompt"], label=False))
messages.append(
Message(
role="assistant", content=prompt["rejected"][1]["content"], label=True
)
)
return MessageList(messages=messages)
def get_prompt(self, prompt) -> MessageList:
"""Map the data to extract everything up to the last turn"""
total_msg_len = len(prompt["chosen"])
total_msg_turns, remainder = divmod(total_msg_len, 2)
assert remainder == 0, "invalid number of turns"
messages: List[Message] = []
if system := prompt.get("system", None):
messages.append(Message(role="system", content=system, label=False))
for i in range(total_msg_turns):
if "prompt" in prompt:
messages.append(
Message(role="user", content=prompt["prompt"], label=False)
)
else:
messages.append(
Message(
role="user",
content=prompt["chosen"][i * 2]["content"],
label=False,
)
)
if i < total_msg_turns - 1:
messages.append(
Message(
role="assistant",
content=prompt["chosen"][i * 2 + 1]["content"],
label=False,
)
)
return MessageList(messages=messages)
def get_chosen(self, prompt) -> MessageList:
res = self.get_prompt(prompt)
res.messages.append(
Message(
role="assistant", content=prompt["chosen"][-1]["content"], label=True
)
)
return res
def get_rejected(self, prompt) -> MessageList:
res = self.get_prompt(prompt)
res.messages.append(
Message(
role="assistant", content=prompt["rejected"][-1]["content"], label=True
)
)
return res
class ORPOTokenizingStrategy(PromptTokenizingStrategy):
"""
rejected_input_ids
input_ids
rejected_attention_mask
attention_mask
rejected_labels
labels
"""
def __init__(
self,
*args,
dataset_parser=None,
**kwargs,
):
super().__init__(*args, **kwargs)
self.dataset_parser = dataset_parser
def tokenize_prompt(self, prompt):
# pass the rejected prompt/row to the Prompter to get the formatted prompt
prompt_len = 0
rejected_message_list = self.dataset_parser.get_rejected_conversation_thread(
prompt
)
input_ids = []
labels = []
for _, (part, label) in enumerate(
self.prompter.build_prompt(rejected_message_list)
):
if not part:
continue
_input_ids = self.tokenizer.encode(part, add_special_tokens=False)
prev_idx = len(input_ids)
input_ids += _input_ids[prev_idx:]
if label:
labels += input_ids[prev_idx:]
else:
labels += [IGNORE_INDEX] * (len(input_ids) - prev_idx)
prompt_len = len(input_ids)
# remap the input_ids, attention_mask and labels
rejected_input_ids = input_ids
rejected_labels = labels
# pass the chosen prompt/row to the Prompter to get the formatted prompt
chosen_message_list = self.dataset_parser.get_chosen_conversation_thread(prompt)
input_ids = []
labels = []
for _, (part, label) in enumerate(
self.prompter.build_prompt(chosen_message_list)
):
if not part:
continue
_input_ids = self.tokenizer.encode(part, add_special_tokens=False)
prev_idx = len(input_ids)
input_ids += _input_ids[prev_idx:]
if label:
labels += input_ids[prev_idx:]
else:
labels += [IGNORE_INDEX] * (len(input_ids) - prev_idx)
return {
"rejected_input_ids": rejected_input_ids,
"rejected_labels": rejected_labels,
"rejected_attention_mask": [1] * len(rejected_labels),
"input_ids": input_ids,
"labels": labels,
"attention_mask": [1] * len(labels),
"prompt_attention_mask": [1] * prompt_len
+ [0] * (len(labels) - prompt_len),
}
class ORPOPrompter(Prompter):
"""Single Turn prompter for ORPO"""
def __init__(self, chat_template, tokenizer):
self.chat_template = chat_template
self.tokenizer = tokenizer
def build_prompt(
self,
message_list: MessageList,
) -> Generator[Tuple[str, bool], None, None]:
conversation = []
for message in message_list.messages:
conversation.append(message.model_dump())
if message.role == "system":
yield self.tokenizer.apply_chat_template(
conversation,
add_generation_prompt=False,
chat_template=self.chat_template,
tokenize=False,
), False
if message.role == "user":
yield self.tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
chat_template=self.chat_template,
tokenize=False,
), False
if message.role == "assistant":
yield self.tokenizer.apply_chat_template(
conversation,
add_generation_prompt=False,
chat_template=self.chat_template,
tokenize=False,
), True
def argilla(cfg, **kwargs): # pylint: disable=possibly-unused-variable,unused-argument
dataset_parser = ORPODatasetParsingStrategy()
chat_template_str = chat_templates(cfg.chat_template)
def transform_fn(sample, tokenizer=None):
res = {}
res["prompt"] = tokenizer.apply_chat_template(
[msg.model_dump() for msg in dataset_parser.get_prompt(sample).messages],
add_generation_prompt=True,
chat_template=chat_template_str,
tokenize=False,
)
prompt_str_len = len(res["prompt"])
res["chosen"] = tokenizer.apply_chat_template(
[msg.model_dump() for msg in dataset_parser.get_chosen(sample).messages],
add_generation_prompt=False,
chat_template=chat_template_str,
tokenize=False,
)[prompt_str_len:]
res["rejected"] = tokenizer.apply_chat_template(
[msg.model_dump() for msg in dataset_parser.get_rejected(sample).messages],
add_generation_prompt=False,
chat_template=chat_template_str,
tokenize=False,
)[prompt_str_len:]
return res
return transform_fn
|