File size: 16,782 Bytes
bde3c5a 8c2e05a bde3c5a 8c2e05a bde3c5a 8c2e05a bde3c5a 8c2e05a bde3c5a 8c2e05a bde3c5a 8c2e05a 4b997c3 8c2e05a 4b997c3 8c2e05a bde3c5a 8c2e05a bde3c5a 8c2e05a 4b997c3 8c2e05a bde3c5a 31f3e71 bde3c5a 8c2e05a bde3c5a 8c2e05a bde3c5a 8c2e05a 2c9c88b bde3c5a 8c2e05a bde3c5a 8c2e05a bde3c5a 8c2e05a bde3c5a 8c2e05a bde3c5a 8c2e05a bde3c5a 8c2e05a bde3c5a 8c2e05a bde3c5a 8c2e05a bde3c5a 8c2e05a bde3c5a 8c2e05a bde3c5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
"""Implements the ReLoRA training procedure from https://arxiv.org/abs/2307.05695, minus the initial full fine-tune."""
import glob
import json
import logging
import os.path
import shutil
from functools import partial
from pathlib import Path
from typing import Dict, List, Sequence, Union
import bitsandbytes as bnb
import peft
import safetensors.torch as st
import torch
from huggingface_hub import snapshot_download
from torch.distributed.optim import ZeroRedundancyOptimizer
from torch.optim.lr_scheduler import LRScheduler
from torch.optim.optimizer import Optimizer
from transformers import (
TrainerCallback,
TrainerControl,
TrainerState,
TrainingArguments,
)
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from axolotl.utils.dict import DictDefault
from axolotl.utils.distributed import barrier, is_main_process
LOG = logging.getLogger("axolotl.relora")
@torch.no_grad()
def magnitude_pruning_(tensor, prune_ratio):
tensor_magnitude = torch.abs(tensor)
threshold = torch.quantile(
tensor_magnitude.flatten().to(dtype=torch.float32), prune_ratio
).to(dtype=tensor.dtype)
mask = tensor_magnitude > threshold
tensor.mul_(mask.to(dtype=tensor.dtype))
def reset_optimizer(
optimizer: torch.optim.Optimizer,
*,
reset_params: list[str], # where str is the key to a torch.nn.Parameter
optimizer_state_keys: list[str],
prune_ratio: float = 0.9,
):
pruning_fn = partial(magnitude_pruning_, prune_ratio=prune_ratio)
n_zeros = 0
n_total = 0
optimizer_state = optimizer.state
if isinstance(optimizer, ZeroRedundancyOptimizer):
optimizer_state = optimizer.optim.state
for param in reset_params:
param_state = optimizer_state[param]
if len(param_state) == 0: # no state for this param, happens for ZeRo optimizer
continue
for key in optimizer_state_keys:
pruning_fn(
param_state[key]
) # pruning fn has to be inplace to keep the same keys in the dict
n_total += param_state[key].numel()
n_zeros += torch.sum(param_state[key] == 0).item()
_zeroed = n_zeros / (1e-7 + n_total) * 100
LOG.info(f"Percent of optimizer states zeroed: {_zeroed:.2f}")
LOG.info(f"absolute n of optimizer states zeroed: {n_zeros}")
class ReLoRACallback(TrainerCallback):
"""Callback to merge LoRA weights into the base model and save full-weight checkpoints"""
def __init__(self, cfg: DictDefault):
self.relora_steps = cfg.relora_steps
self.cpu_offload = cfg.relora_cpu_offload
self.quantized = cfg.load_in_4bit or cfg.load_in_8bit
self.last_full_model = cfg.base_model
self.resume_from_checkpoint = cfg.resume_from_checkpoint
if not os.path.exists(self.last_full_model):
self.last_full_model = str(Path(snapshot_download(cfg.base_model)))
assert os.path.exists(
self.last_full_model
), "for ReLORA base_model must be a local path"
self.num_lora_restarts = 0
self.need_full_save = False
def on_train_begin(
self,
_args: TrainingArguments,
_state: TrainerState,
control: TrainerControl,
model: peft.LoraModel,
**_kwargs,
):
if self.resume_from_checkpoint:
weight_path = os.path.join(self.resume_from_checkpoint, "relora")
if not os.path.exists(weight_path):
LOG.warning(
"Resuming ReLoRA from checkpoint, but no full-weight save found"
)
else:
LOG.info(f"Loading adjusted base weights from {weight_path}")
load_weight_checkpoint(model, weight_path)
return control
def on_step_begin(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
model: peft.LoraModel,
optimizer: torch.optim.Optimizer,
**_kwargs,
):
if state.global_step > 0 and state.global_step % self.relora_steps == 0:
checkpoint_folder = os.path.join(
args.output_dir,
f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}",
"relora",
)
if "adam" in args.optim.lower():
optimizer_state_keys = ["exp_avg", "exp_avg_sq"]
else:
raise ValueError(f"Optimizer {args.optim} not supported with ReLoRA")
lora_params = [
n
for n, p in model.named_parameters()
if p.requires_grad and "lora_" in n
]
model.save_pretrained(
os.path.join(
args.output_dir,
f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}",
"adapter",
),
safe_serialization=True,
)
with torch.no_grad():
merge_and_save(
model,
self.last_full_model,
checkpoint_folder,
reinit=True,
quantized=self.quantized,
actually_save=is_main_process(),
cpu_offload=self.cpu_offload,
)
reset_optimizer(
optimizer,
reset_params=lora_params,
optimizer_state_keys=optimizer_state_keys,
prune_ratio=args.relora_prune_ratio,
)
if self.quantized:
self.last_full_model = checkpoint_folder
self.num_lora_restarts += 1
return control
def on_save(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
model: peft.LoraModel,
**_kwargs,
):
checkpoint_folder = os.path.join(
args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}", "relora"
)
if (
state.global_step >= self.relora_steps
and state.global_step % self.relora_steps != 0
):
if self.quantized:
if is_main_process() and self.last_full_model != checkpoint_folder:
# ensure the latest full parameter save is in the latest checkpoint
# folder, so that automatic pruning of checkpoints does not remove it
LOG.info(f"moving last full parameter save to {checkpoint_folder}")
os.makedirs(checkpoint_folder, exist_ok=True)
chunks = glob.glob(
f"{self.last_full_model}/model*.safetensors"
) + glob.glob(f"{self.last_full_model}/model*.index.json")
for path in chunks:
new_path = os.path.abspath(shutil.move(path, checkpoint_folder))
try:
os.symlink(new_path, path)
except OSError:
# probably on windows without permission to symlink
pass
self.last_full_model = checkpoint_folder
else:
model.model.save_pretrained(checkpoint_folder, safe_serialization=True)
return control
def on_log(
self,
_args: TrainingArguments,
_state: TrainerState,
control: TrainerControl,
logs: Dict[str, float],
**_kwargs,
):
logs["num_lora_restarts"] = self.num_lora_restarts
return control
def on_train_end(
self,
args: TrainingArguments,
_state: TrainerState,
control: TrainerControl,
model: peft.LoraModel,
**_kwargs,
):
if self.quantized:
# perform final merge and save
with torch.no_grad():
merge_and_save(
model,
self.last_full_model,
args.output_dir,
reinit=False,
quantized=self.quantized,
actually_save=is_main_process(),
cpu_offload=self.cpu_offload,
)
# no need to save if unquantized, as finetune.py will call merge_and_unload()
return control
class ReLoRAScheduler(LRScheduler):
"""Wraps another scheduler to apply per-lora-restart learning rate warmups."""
def __init__(
self,
optimizer: Optimizer,
inner_schedule: LRScheduler,
relora_steps: int,
warmup_steps: int,
anneal_steps: int = 1,
min_lr_scale: float = 0.001,
) -> None:
self.inner_schedule = inner_schedule
self.relora_steps = relora_steps
self.warmup_steps = warmup_steps
self.anneal_steps = anneal_steps
self.min_lr_scale = min_lr_scale
super().__init__(optimizer, inner_schedule.last_epoch, inner_schedule.verbose)
def get_lr(self) -> float:
self.inner_schedule.last_epoch = self.last_epoch
original = self.inner_schedule.get_lr()
step = self.last_epoch
if step < self.relora_steps - self.warmup_steps:
scale = 1
else:
per_relora_progress = step % self.relora_steps
if per_relora_progress < self.warmup_steps:
cycle_t = min(1.0, (per_relora_progress) / self.warmup_steps)
elif per_relora_progress > (self.relora_steps - self.anneal_steps):
cycle_t = min(
1.0,
(self.relora_steps - per_relora_progress) / self.anneal_steps,
)
else:
cycle_t = 1
scale = cycle_t * (1 - self.min_lr_scale) + self.min_lr_scale
if isinstance(original, Sequence):
return [lr * scale for lr in original]
return original * scale
def sharded_paths(path: str, module_names: List[str]) -> Dict[str, str]:
model_name = "model.safetensors"
if not os.path.exists(str(Path(path) / model_name)) and not os.path.exists(
str(Path(path) / f"{model_name}.index.json")
):
model_name = "pytorch_model.bin"
index_path = str(Path(path) / f"{model_name}.index.json")
if os.path.exists(index_path):
with open(index_path, "r", encoding="utf-8") as file:
data = json.load(file)
return data["weight_map"]
return {(module_name + ".weight"): model_name for module_name in module_names}
def lora_delta_weight(layer: peft.tuners.lora.LoraLayer, device) -> torch.Tensor:
if isinstance(layer, (peft.tuners.lora.Linear8bitLt, peft.tuners.lora.Linear4bit)):
adapter: Union[List[str], str] = layer.active_adapter
if isinstance(adapter, list):
if len(adapter) > 1:
raise ValueError("unhandled relora for multiple adapters")
adapter = adapter[0]
return (
peft.utils.transpose(
layer.lora_B[adapter].weight.detach().to(device)
@ layer.lora_A[adapter].weight.detach().to(device),
getattr(layer, "fan_in_fan_out", False),
)
* layer.scaling[adapter]
)
raise ValueError("unhandled lora layer type")
def find_lora_modules(model: peft.LoraModel) -> Dict[str, peft.tuners.lora.LoraLayer]:
modules: Dict[str, peft.tuners.lora.LoraLayer] = {}
key_list = [key for key, _ in model.model.named_modules() if "lora" not in key]
for key in key_list:
try:
# pylint: disable=protected-access
_parent, target, _target_name = peft.utils._get_submodules(model.model, key)
except AttributeError:
continue
if isinstance(target, peft.tuners.lora.LoraLayer):
modules[key] = target
return modules
def update_weights(
target: peft.tuners.lora.LoraLayer, new_weight: torch.Tensor, reinit: bool, device
):
if reinit:
for adapter_name in target.lora_A:
target.reset_lora_parameters(adapter_name, True)
for adapter_name in target.lora_embedding_A:
target.reset_lora_parameters(adapter_name, True)
if isinstance(target, peft.tuners.lora.Linear4bit):
# This could be faster, but the quantization of Linear4bit weights occurs
# when the module is moved from cpu to gpu. Without meddling *too* deeply in
# PEFT's innards or maintaining a duplicate of that codepath, this is good
# enough for now.
target.weight.quant_state = None
target.weight.data = new_weight.cpu()
target.to(device)
elif isinstance(target, peft.tuners.lora.Linear8bitLt):
target.weight.data = (
bnb.nn.Int8Params(new_weight, requires_grad=False).to(device).data
)
else:
target.weight.data = new_weight.to(device)
def merge_and_save(
model: peft.LoraModel,
model_src: str,
model_dst: str,
reinit: bool = False,
quantized: bool = False,
cpu_offload: bool = False,
actually_save: bool = True,
):
modules = find_lora_modules(model)
if not quantized:
for module_name, target in modules.items():
active_adapter = target.active_adapter
if isinstance(active_adapter, list):
active_adapter = active_adapter[0]
update = target.get_delta_weight(active_adapter).detach()
target.weight.data += update
if reinit:
for adapter_name in target.lora_A:
target.reset_lora_parameters(adapter_name, True)
for adapter_name in target.lora_embedding_A:
target.reset_lora_parameters(adapter_name, True)
return
os.makedirs(model_dst, exist_ok=True)
shard_paths = sharded_paths(model_src, modules.keys())
out_shard_paths = {}
unique_shards = list(set(shard_paths.values()))
for shard_path in unique_shards:
out_tensors = {}
if shard_path.endswith(".safetensors"):
in_tensors = st.load_file(str(Path(model_src) / shard_path))
else:
in_tensors = torch.load(Path(model_src) / shard_path)
if "state_dict" in in_tensors:
in_tensors = in_tensors["state_dict"]
for module_name, target in modules.items():
key = module_name + ".weight"
if key not in shard_paths or shard_paths[key] != shard_path:
continue
orig_weight = in_tensors[key]
old_dev = target.weight.device
math_dev = "cpu" if cpu_offload else old_dev
delta_weight = lora_delta_weight(target, math_dev)
new_weight = orig_weight.to(math_dev) + delta_weight
del delta_weight
if actually_save:
out_tensors[key] = new_weight.half().cpu()
update_weights(target, new_weight, reinit=reinit, device=old_dev)
if actually_save:
out_shard_name = shard_path
if out_shard_name.startswith("pytorch_model"):
out_shard_name = (
out_shard_name.replace("pytorch_model", "model").rstrip(".bin")
+ ".safetensors"
)
for module_name in in_tensors:
if module_name not in out_tensors:
out_tensors[module_name] = in_tensors[module_name].half()
out_shard_paths[module_name] = out_shard_name
shard_fn = str(Path(model_dst) / out_shard_name)
LOG.info(f"saving tensors to {shard_fn}")
st.save_file(out_tensors, shard_fn, metadata={"format": "pt"})
barrier()
del in_tensors
del out_tensors
torch.cuda.empty_cache()
if actually_save and len(unique_shards) > 1:
with open(
str(Path(model_dst, "model.safetensors.index.json")), "w", encoding="utf-8"
) as file:
json.dump({"metadata": {}, "weight_map": out_shard_paths}, file)
def load_weight_checkpoint(model: peft.LoraModel, checkpoint_path: str):
modules = find_lora_modules(model)
shard_paths = sharded_paths(checkpoint_path, modules.keys())
unique_shards = list(set(shard_paths.values()))
for shard_path in unique_shards:
tensors = st.load_file(os.path.join(checkpoint_path, shard_path))
for module_name, target in modules.items():
key = module_name + ".weight"
if key not in shard_paths or shard_paths[key] != shard_path:
continue
new_weight = tensors[key]
update_weights(
target, new_weight, reinit=False, device=target.weight.device
)
|