File size: 8,923 Bytes
6045345 2bc1a5b 8d43785 6045345 cf68153 6045345 cf68153 6045345 aa3c3f9 6045345 4a17a4c 6045345 aa3c3f9 6045345 097d367 6045345 8d43785 6045345 8d43785 6045345 2bc1a5b 8d43785 6045345 a27d594 a12fb0a 6045345 cf68153 6045345 4a17a4c 6045345 4a17a4c 6045345 2bc1a5b 6045345 aa3c3f9 4a17a4c aa3c3f9 0d28df0 aa3c3f9 4a17a4c aa3c3f9 097d367 2bc1a5b 097d367 2bc1a5b 6045345 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import logging
from hashlib import md5
from pathlib import Path
from datasets import (
load_from_disk,
load_dataset,
IterableDataset,
Dataset,
concatenate_datasets,
)
from huggingface_hub import hf_hub_download
from axolotl.datasets import TokenizedPromptDataset, ConstantLengthDataset
from axolotl.prompt_tokenizers import (
AlpacaPromptTokenizingStrategy,
GPTeacherPromptTokenizingStrategy,
OpenAssistantPromptTokenizingStrategy,
AlpacaReflectionPTStrategy,
ShareGPTPromptTokenizingStrategy,
JeopardyPromptTokenizingStrategy,
CompletionPromptTokenizingStrategy,
)
from axolotl.prompters import (
AlpacaPrompter,
GPTeacherPrompter,
ReflectAlpacaPrompter,
ShareGPTPrompter,
JeopardyPrompter,
CompletionPrompter,
)
def load_tokenized_prepared_datasets(tokenizer, cfg, default_dataset_prepared_path):
ds_hash = str(
md5(
(
str(cfg.sequence_len)
+ "@"
+ "|".join(sorted([f"{d.path}:{d.type}" for d in cfg.datasets]))
).encode("utf-8")
).hexdigest()
)
prepared_ds_path = (
Path(cfg.dataset_prepared_path) / ds_hash
if cfg.dataset_prepared_path
else Path(default_dataset_prepared_path) / ds_hash
)
if any(prepared_ds_path.glob("*")):
logging.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
dataset = load_from_disk(str(prepared_ds_path))
logging.info("Prepared dataset loaded from disk...")
else:
logging.info(f"Unable to find prepared dataset in {prepared_ds_path}")
logging.info("Loading raw datasets...")
datasets = []
for d in cfg.datasets:
ds = None
ds_from_hub = False
try:
load_dataset(d.path, streaming=True)
ds_from_hub = True
except FileNotFoundError:
pass
# prefer local dataset, even if hub exists
if Path(d.path).exists():
ds: IterableDataset = load_dataset(
"json", data_files=d.path, streaming=True, split=None
)
elif ds_from_hub:
if d.data_files:
ds = load_dataset(d.path, streaming=True, data_files=d.data_files)
else:
ds = load_dataset(d.path, streaming=True)
else:
fp = hf_hub_download(
repo_id=d.path, repo_type="dataset", filename=d.data_files
)
ds = load_dataset("json", data_files=fp, streaming=True, split=None)
if not ds:
raise Exception("unhandled dataset load")
if d.type == "alpaca":
ds_strategy = AlpacaPromptTokenizingStrategy(
AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
elif d.type == "jeopardy":
ds_strategy = JeopardyPromptTokenizingStrategy(
JeopardyPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
elif d.type == "oasst":
ds_strategy = OpenAssistantPromptTokenizingStrategy(
AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
elif d.type == "gpteacher":
ds_strategy = GPTeacherPromptTokenizingStrategy(
GPTeacherPrompter(),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
elif d.type == "reflection":
ds_strategy = AlpacaReflectionPTStrategy(
ReflectAlpacaPrompter(),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
elif d.type == "sharegpt":
ds_strategy = ShareGPTPromptTokenizingStrategy(
ShareGPTPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
elif d.type == "completion":
ds_strategy = CompletionPromptTokenizingStrategy(
CompletionPrompter(),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
else:
logging.error(f"unhandled prompt tokenization strategy: {d.type}")
logging.info("tokenizing, merging, and shuffling master dataset")
samples = []
for d in datasets:
samples = samples + [i for i in d]
dataset = Dataset.from_list(samples).shuffle(seed=42)
if cfg.local_rank == 0:
logging.info(
f"Saving merged prepared dataset to disk... {prepared_ds_path}"
)
dataset.save_to_disk(prepared_ds_path)
return dataset
def load_prepare_datasets(tokenizer, cfg, default_dataset_prepared_path):
max_packed_sequence_len = (
cfg.max_packed_sequence_len if cfg.max_packed_sequence_len else cfg.sequence_len
)
max_packed_sequence_len = min(
max_packed_sequence_len, cfg.sequence_len
) # make sure we don't accidentally set it larger than sequence_len
if cfg.max_packed_sequence_len is not None:
# see if we can go ahead and load the stacked dataset
ds_hash = str(
md5(
(
str(cfg.sequence_len)
+ "@"
+ str(max_packed_sequence_len)
+ "|".join(sorted([f"{d.path}:{d.type}" for d in cfg.datasets]))
).encode("utf-8")
).hexdigest()
)
prepared_ds_path = (
Path(cfg.dataset_prepared_path) / ds_hash
if cfg.dataset_prepared_path
else Path(default_dataset_prepared_path) / ds_hash
)
if any(prepared_ds_path.glob("*")):
logging.info(
f"Loading prepared packed dataset from disk at {prepared_ds_path}..."
)
dataset = load_from_disk(str(prepared_ds_path))
logging.info("Prepared packed dataset loaded from disk...")
else:
dataset = load_tokenized_prepared_datasets(
tokenizer, cfg, default_dataset_prepared_path
)
constant_len_dataset = ConstantLengthDataset(
tokenizer,
[dataset],
seq_length=max_packed_sequence_len,
)
logging.info(
f"packing master dataset to len: {cfg.max_packed_sequence_len}"
)
dataset = Dataset.from_list([_ for _ in constant_len_dataset])
# filter out bad data
dataset = Dataset.from_list(
[
d
for d in dataset
if len(d["input_ids"]) < cfg.sequence_len
and len(d["input_ids"]) > 0
and len(d["input_ids"]) == len(d["attention_mask"])
and len(d["input_ids"]) == len(d["labels"])
]
)
if cfg.local_rank == 0:
logging.info(
f"Saving packed prepared dataset to disk... {prepared_ds_path}"
)
dataset.save_to_disk(prepared_ds_path)
else:
dataset = load_tokenized_prepared_datasets(
tokenizer, cfg, default_dataset_prepared_path
)
if cfg.dataset_shard_num and cfg.dataset_shard_idx is not None:
logging.info(
f"Using index #{cfg.dataset_shard_idx} of {cfg.dataset_shard_num} shards"
)
dataset = dataset.shard(
num_shards=cfg.dataset_shard_num, index=cfg.dataset_shard_idx
)
dataset = dataset.train_test_split(test_size=cfg.val_set_size, shuffle=False)
train_dataset = dataset["train"]
eval_dataset = dataset["test"]
return train_dataset, eval_dataset
|