File size: 14,537 Bytes
4c0eddb cb7cd34 6045345 392dfd9 6045345 2bc1a5b ce34d64 2bc1a5b 8d43785 2809f3f 6045345 4ea9a66 6045345 cf68153 1365073 6045345 cf68153 1365073 ce34d64 6045345 ce34d64 2809f3f 6045345 4a17a4c cb7cd34 392dfd9 cb7cd34 6045345 1d5ab84 1c33eb8 1d5ab84 ce34d64 1c33eb8 ce34d64 607a4d3 392dfd9 1d5ab84 6045345 1d5ab84 aa3c3f9 6045345 097d367 6045345 cb7cd34 6045345 a4f1241 6045345 1c33eb8 6045345 a4f1241 0f74464 6045345 8d43785 a4f1241 ce34d64 1c33eb8 ce34d64 8d43785 1c33eb8 6045345 2bc1a5b 392dfd9 8d43785 392dfd9 e8aacfb 2e56203 392dfd9 2e56203 392dfd9 1d5ab84 4ea9a66 1d5ab84 2e56203 ce34d64 2e56203 4ea9a66 6045345 ce34d64 6045345 2e56203 6045345 1d5ab84 b46bc02 ce34d64 b46bc02 2e56203 b46bc02 1d5ab84 1365073 ce34d64 1365073 2e56203 1365073 1d5ab84 1365073 ce34d64 1365073 2e56203 1365073 1d5ab84 a12fb0a ce34d64 a12fb0a 2e56203 a12fb0a 1d5ab84 6045345 ce34d64 6045345 2e56203 6045345 1d5ab84 6045345 1d5ab84 6045345 2e56203 6045345 1d5ab84 6045345 1d5ab84 6045345 2e56203 6045345 1d5ab84 6045345 ce34d64 6045345 2e56203 6045345 1d5ab84 cf68153 2e56203 cf68153 6045345 4a17a4c 6045345 4a17a4c cb7cd34 4a17a4c 6045345 2bc1a5b 6045345 1d5ab84 ce34d64 6045345 aa3c3f9 ce34d64 392dfd9 aa3c3f9 2809f3f 4a17a4c aa3c3f9 1d5ab84 aa3c3f9 cb7cd34 392dfd9 cb7cd34 aa3c3f9 1d5ab84 1c33eb8 1d5ab84 98a6781 1d5ab84 ce34d64 1c33eb8 ce34d64 607a4d3 392dfd9 1d5ab84 aa3c3f9 2809f3f ce34d64 aa3c3f9 1d5ab84 aa3c3f9 cb7cd34 aa3c3f9 0d28df0 cb7cd34 0d28df0 aa3c3f9 1d5ab84 ce34d64 aa3c3f9 4a17a4c aa3c3f9 097d367 2bc1a5b 097d367 2bc1a5b 6045345 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
"""Module containing data utilities"""
import logging
from hashlib import md5
from pathlib import Path
from typing import Tuple, Union
from datasets import (
load_from_disk,
load_dataset,
Dataset,
DatasetDict,
)
from huggingface_hub import hf_hub_download
from transformers import PreTrainedTokenizerBase
from axolotl.datasets import TokenizedPromptDataset, ConstantLengthDataset
from axolotl.prompt_strategies import load
from axolotl.prompt_tokenizers import (
AlpacaPromptTokenizingStrategy,
GPTeacherPromptTokenizingStrategy,
OpenAssistantPromptTokenizingStrategy,
AlpacaReflectionPTStrategy,
ShareGPTPromptTokenizingStrategy,
JeopardyPromptTokenizingStrategy,
CompletionPromptTokenizingStrategy,
AlpacaMultipleChoicePromptTokenizingStrategy,
SummarizeTLDRPromptTokenizingStrategy,
)
from axolotl.prompters import (
AlpacaPrompter,
GPTeacherPrompter,
ReflectAlpacaPrompter,
ShareGPTPrompter,
JeopardyPrompter,
CompletionPrompter,
MultipleChoiceExplainPrompter,
SummarizeTLDRPrompter,
MultipleChoiceConcisePrompter,
)
def load_tokenized_prepared_datasets(
tokenizer, cfg, default_dataset_prepared_path
) -> DatasetDict:
tokenizer_name = tokenizer.__class__.__name__
ds_hash = str(
md5(
(
str(cfg.sequence_len)
+ "@"
+ "|".join(
sorted([f"{d.path}:{d.type}:{d.shards}" for d in cfg.datasets])
)
+ "|"
+ tokenizer_name
).encode("utf-8")
).hexdigest()
)
prepared_ds_path = (
Path(cfg.dataset_prepared_path) / ds_hash
if cfg.dataset_prepared_path
else Path(default_dataset_prepared_path) / ds_hash
)
dataset = None
use_auth_token = cfg.hf_use_auth_token
try:
if cfg.push_dataset_to_hub:
dataset = load_dataset(
f"{cfg.push_dataset_to_hub}/{ds_hash}", use_auth_token=use_auth_token
)
dataset = dataset["train"]
except Exception: # pylint: disable=broad-except
pass
if dataset:
...
elif any(prepared_ds_path.glob("*")):
logging.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
dataset = load_from_disk(str(prepared_ds_path))
logging.info("Prepared dataset loaded from disk...")
else:
logging.info(f"Unable to find prepared dataset in {prepared_ds_path}")
logging.info("Loading raw datasets...")
datasets = []
# pylint: disable=invalid-name
for d in cfg.datasets:
ds: Union[Dataset, DatasetDict] = None
ds_from_hub = False
try:
load_dataset(d.path, streaming=True, use_auth_token=use_auth_token)
ds_from_hub = True
except FileNotFoundError:
pass
# prefer local dataset, even if hub exists
if Path(d.path).exists():
ds: Dataset = load_dataset(
"json", data_files=d.path, streaming=False, split=None
)
elif ds_from_hub:
if d.data_files:
ds: Dataset = load_dataset(
d.path,
streaming=False,
data_files=d.data_files,
use_auth_token=use_auth_token,
)
else:
ds: Dataset = load_dataset(d.path, streaming=False, use_auth_token=use_auth_token)
else:
fp = hf_hub_download(
repo_id=d.path, repo_type="dataset", filename=d.data_files
)
ds: Dataset = load_dataset(
"json", data_files=fp, streaming=False, split=None
)
if not ds:
raise ValueError("unhandled dataset load")
# support for using a subset of the data
if d.shards:
if "train" in ds:
ds: DatasetDict = ds.shuffle(seed=42)["train"].shard(
num_shards=d.shards, index=0
)
else:
ds: Dataset = ds.shuffle(seed=42).shard(
num_shards=d.shards, index=0
)
d_type = d.type
d_type_split = d_type.split(":")
d_base_type = d_type_split[0]
d_prompt_style = d_type_split[1] if len(d_type_split) > 1 else None
if "train" in ds:
ds = ds["train"]
if ds_strategy := load(d.type, tokenizer, cfg):
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "alpaca":
ds_strategy = AlpacaPromptTokenizingStrategy(
AlpacaPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "explainchoice":
ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy(
MultipleChoiceExplainPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "concisechoice":
ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy(
MultipleChoiceConcisePrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "summarizetldr":
ds_strategy = SummarizeTLDRPromptTokenizingStrategy(
SummarizeTLDRPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "jeopardy":
ds_strategy = JeopardyPromptTokenizingStrategy(
JeopardyPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "oasst":
ds_strategy = OpenAssistantPromptTokenizingStrategy(
AlpacaPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "gpteacher":
ds_strategy = GPTeacherPromptTokenizingStrategy(
GPTeacherPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "reflection":
ds_strategy = AlpacaReflectionPTStrategy(
ReflectAlpacaPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "sharegpt":
ds_strategy = ShareGPTPromptTokenizingStrategy(
ShareGPTPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "completion":
ds_strategy = CompletionPromptTokenizingStrategy(
CompletionPrompter(),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
else:
logging.error(f"unhandled prompt tokenization strategy: {d.type}")
logging.info("tokenizing, merging, and shuffling master dataset")
samples = []
for d in datasets:
samples = samples + list(d)
dataset = Dataset.from_list(samples).shuffle(seed=42)
if cfg.local_rank == 0:
logging.info(
f"Saving merged prepared dataset to disk... {prepared_ds_path}"
)
dataset.save_to_disk(prepared_ds_path)
if cfg.push_dataset_to_hub:
logging.info(
f"Saving merged prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
)
dataset.push_to_hub(
f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True
)
return dataset
def load_prepare_datasets(
tokenizer: PreTrainedTokenizerBase, cfg, default_dataset_prepared_path
) -> Tuple[Dataset, Dataset]:
max_packed_sequence_len = (
cfg.max_packed_sequence_len if cfg.max_packed_sequence_len else cfg.sequence_len
)
max_packed_sequence_len = min(
max_packed_sequence_len, cfg.sequence_len
) # make sure we don't accidentally set it larger than sequence_len
tokenizer_name = tokenizer.__class__.__name__
if cfg.max_packed_sequence_len is not None:
# see if we can go ahead and load the stacked dataset
seed = f"@{str(cfg.seed)}" if cfg.seed else ""
ds_hash = str(
md5(
(
str(cfg.sequence_len)
+ "@"
+ str(max_packed_sequence_len)
+ seed
+ "|".join(
sorted([f"{d.path}:{d.type}:{d.shards}" for d in cfg.datasets])
)
+ "|"
+ tokenizer_name
).encode("utf-8")
).hexdigest()
)
prepared_ds_path = (
Path(cfg.dataset_prepared_path) / ds_hash
if cfg.dataset_prepared_path
else Path(default_dataset_prepared_path) / ds_hash
)
dataset = None
use_auth_token = cfg.hf_use_auth_token
try:
if cfg.push_dataset_to_hub:
logging.info(
f"Checking for packed prepared dataset from hub... {cfg.push_dataset_to_hub}/{ds_hash}"
)
dataset = load_dataset(
f"{cfg.push_dataset_to_hub}/{ds_hash}", use_auth_token=use_auth_token
)
dataset = dataset["train"]
except Exception: # pylint: disable=broad-except
pass
if dataset:
...
elif any(prepared_ds_path.glob("*")):
logging.info(
f"Loading prepared packed dataset from disk at {prepared_ds_path}..."
)
dataset = load_from_disk(str(prepared_ds_path))
logging.info("Prepared packed dataset loaded from disk...")
if cfg.push_dataset_to_hub:
logging.info(
f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
)
dataset.push_to_hub(
f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True
)
else:
dataset = load_tokenized_prepared_datasets(
tokenizer, cfg, default_dataset_prepared_path
)
if cfg.seed:
dataset = dataset.shuffle(seed=cfg.seed)
constant_len_dataset = ConstantLengthDataset(
tokenizer,
[dataset],
seq_length=max_packed_sequence_len,
)
logging.info(
f"packing master dataset to len: {cfg.max_packed_sequence_len}"
)
dataset = Dataset.from_list(list(constant_len_dataset))
# filter out bad data
dataset = Dataset.from_list(
[
d
for d in dataset
if len(d["input_ids"]) < cfg.sequence_len
and len(d["input_ids"]) > 0
and len(d["input_ids"]) == len(d["attention_mask"])
and len(d["input_ids"]) == len(d["labels"])
]
)
if cfg.local_rank == 0:
logging.info(
f"Saving packed prepared dataset to disk... {prepared_ds_path}"
)
dataset.save_to_disk(prepared_ds_path)
if cfg.push_dataset_to_hub:
logging.info(
f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
)
dataset.push_to_hub(
f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True
)
else:
dataset = load_tokenized_prepared_datasets(
tokenizer, cfg, default_dataset_prepared_path
)
if cfg.dataset_shard_num and cfg.dataset_shard_idx is not None:
logging.info(
f"Using index #{cfg.dataset_shard_idx} of {cfg.dataset_shard_num} shards"
)
dataset = dataset.shard(
num_shards=cfg.dataset_shard_num, index=cfg.dataset_shard_idx
)
dataset = dataset.train_test_split(test_size=cfg.val_set_size, shuffle=False)
train_dataset = dataset["train"]
eval_dataset = dataset["test"]
return train_dataset, eval_dataset
|