File size: 4,076 Bytes
2809f3f 0f74464 2809f3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import copy
import logging
from collections import defaultdict
from typing import Generator
from axolotl.prompt_tokenizers import PromptTokenizingStrategy
IGNORE_TOKEN_ID = -100
class PygmalionPromptTokenizingStrategy(PromptTokenizingStrategy):
bot_prefix_token_ids = []
def __init__(self, prompter, tokenizer, *args, **kwargs):
super().__init__(prompter, tokenizer)
res = self._tokenize("<|model|>", add_eos_token=False, strip_bos_token=True)
self.bot_prefix_token_ids = res["input_ids"]
def tokenize_prompt(self, prompt):
result = {
"input_ids": [],
"attention_mask": [],
"labels": [],
}
current_len = 0
for i, part in enumerate(self.prompter.build_prompt(prompt["conversations"])):
role, message = part
if role == "system":
prefix = "<|system|>"
# this should include a bos token, no eos token, strip trailing "\n<START>"
if message.endswith("\n<START>"):
message = message[:-8]
res = self._tokenize(prefix + "Persona: " + message.strip(), add_eos_token=False, strip_bos_token=False)
# everything from this is masked out from the labels
labels = [ IGNORE_TOKEN_ID ] * len(res["input_ids"])
elif role == "human":
prefix = "<|user|>"
res = self._tokenize(prefix + " " + message.strip(), add_eos_token=False, strip_bos_token=True)
# everything from this is masked out from the labels
labels = [ IGNORE_TOKEN_ID ] * len(res["input_ids"])
elif role == "bot":
prefix = "<|model|>"
res = self._tokenize(prefix + " " + message.strip(), add_eos_token=True, strip_bos_token=True)
# mask out the prefix token, rest is not masked out from labels
# make sure we create the labels first, otherwise we get incorrect lengths
labels = [ IGNORE_TOKEN_ID ] * len(self.bot_prefix_token_ids) + [*copy.deepcopy(res["input_ids"])][len(self.bot_prefix_token_ids):]
else:
logging.warning(f"unknown role in conversation: {role}")
res = defaultdict(lambda: [])
input_ids = res["input_ids"]
input_len = len(input_ids)
result["input_ids"][current_len : current_len + input_len] = input_ids
result["attention_mask"][current_len : current_len + input_len] = [
1 if x != self.tokenizer.pad_token_id else 0
for x in input_ids
]
result["labels"][current_len : current_len + input_len] = labels
current_len += input_len
return result
def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False):
result = self.tokenizer(
prompt,
truncation=True,
max_length=self.sequence_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != self.tokenizer.eos_token_id
and len(result["input_ids"]) < self.sequence_len
and add_eos_token
):
result["input_ids"].append(self.tokenizer.eos_token_id)
result["attention_mask"].append(1)
if (
result["input_ids"][0] == self.tokenizer.bos_token_id
and strip_bos_token
):
result["input_ids"] = result["input_ids"][1:]
result["attention_mask"] = result["attention_mask"][1:]
result["labels"] = result["input_ids"].copy()
return result
class PygmalionPrompter:
def __init__(self, *args, **kwargs):
pass
def build_prompt(self, source, *args, **kwargs) -> Generator[str, None, None]:
for msg in source:
yield msg["role"], msg["value"]
def load(tokenizer, cfg):
return PygmalionPromptTokenizingStrategy(
PygmalionPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
)
|