File size: 12,486 Bytes
ce24f5e
5e37144
1d5ab84
 
ce24f5e
 
 
5e37144
 
ce24f5e
 
 
 
 
 
 
8d959a7
 
 
 
ce24f5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5ab84
 
 
4ea9a66
1d5ab84
 
 
 
 
 
4ea9a66
1d5ab84
 
 
ce24f5e
87d7825
 
 
 
ce24f5e
87d7825
 
ce24f5e
 
ce34d64
 
 
 
 
 
 
 
ce24f5e
 
 
a6028d3
 
 
ce24f5e
 
 
87d7825
ce34d64
 
 
 
 
 
 
 
 
ce24f5e
1d5ab84
ce24f5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce34d64
1d5ab84
 
 
ce24f5e
 
 
 
87d7825
 
 
ce24f5e
87d7825
 
 
 
 
b46bc02
 
 
 
 
1365073
b46bc02
 
 
a12fb0a
 
 
 
 
 
 
 
 
87d7825
 
 
 
 
 
 
 
 
1365073
 
 
 
 
 
 
 
 
87d7825
 
 
 
 
ce24f5e
 
 
 
6045345
 
 
 
 
 
 
 
 
cf68153
2bc1a5b
 
cf68153
 
174b74d
5e37144
cf68153
 
 
 
5e37144
 
cf68153
 
81de0ef
 
 
 
 
2bc1a5b
 
 
 
 
 
 
 
 
 
81de0ef
 
ce34d64
 
 
 
 
 
 
 
81de0ef
 
 
 
 
 
 
 
 
 
ce34d64
 
 
 
 
 
 
 
 
 
 
81de0ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6045345
ce24f5e
 
5e37144
 
 
 
 
 
1d5ab84
 
8d959a7
ce34d64
 
 
1d5ab84
 
 
 
ce34d64
 
 
1d5ab84
4ea9a66
1d5ab84
ce34d64
1d5ab84
4ea9a66
1d5ab84
 
ce34d64
 
 
1d5ab84
4ea9a66
1d5ab84
 
 
 
 
5e37144
ce34d64
 
 
5e37144
ce34d64
5e37144
 
 
 
ce34d64
5e37144
 
 
 
f2a2029
8d959a7
5e37144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce34d64
5e37144
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import abc
import copy
import functools
import logging

from transformers import PreTrainedTokenizer

from axolotl.prompters import IGNORE_TOKEN_ID

IGNORE_INDEX = -100
LLAMA_DEFAULT_PAD_TOKEN = "[PAD]"
LLAMA_DEFAULT_EOS_TOKEN = "</s>"
LLAMA_DEFAULT_BOS_TOKEN = "<s>"
LLAMA_DEFAULT_UNK_TOKEN = "<unk>"


class InvalidDataException(Exception):
    pass


class PromptTokenizingStrategy(abc.ABC):
    def __init__(
        self,
        prompter,
        tokenizer,
        train_on_inputs: bool = False,
        sequence_len: int = 2048,
    ):
        self.prompter = prompter
        self.tokenizer: PreTrainedTokenizer = tokenizer
        self.train_on_inputs = train_on_inputs
        self.sequence_len = sequence_len

    @abc.abstractmethod
    def tokenize_prompt(self, prompt):
        pass

    @functools.cache
    def _get_user_token(self):
        id_or_ids = self.tokenizer.convert_tokens_to_ids("<|USER|>")
        if isinstance(id_or_ids, (int,)):
            return id_or_ids
        return False

    @functools.cache
    def _get_assistant_token(self):
        id_or_ids = self.tokenizer.convert_tokens_to_ids("<|ASSISTANT|>")
        if isinstance(id_or_ids, (int,)):
            return id_or_ids
        return False


class InstructionPromptTokenizingStrategy(PromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str):
        raise NotImplementedError

    def tokenize_prompt(self, prompt):
        instruction, input, response = self.parse_instruction_fields(prompt)
        full_prompt = self._build_full_prompt(instruction, input, response)
        tokenized_full_prompt = self._tokenize(full_prompt)
        if not self.train_on_inputs:
            user_prompt = next(
                iter(
                    self.prompter.build_prompt(
                        instruction,
                        input,
                    )
                )
            )
            tokenized_user_prompt = self._tokenize(user_prompt, add_eos_token=False)
            user_prompt_len = len(tokenized_user_prompt["input_ids"])
            # TODO this could be sped up using numpy array slicing
            tokenized_full_prompt["labels"] = [
                -100
            ] * user_prompt_len + tokenized_full_prompt["labels"][user_prompt_len:]

        return tokenized_full_prompt

    def _build_full_prompt(self, instruction, input, response):
        return next(
            iter(
                self.prompter.build_prompt(
                    instruction,
                    input,
                    response,
                )
            )
        )

    def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False):
        result = self.tokenizer(
            prompt,
            truncation=True,
            max_length=self.sequence_len,
            padding=False,
            return_tensors=None,
        )
        if (
            result["input_ids"][-1] != self.tokenizer.eos_token_id
            and len(result["input_ids"]) < self.sequence_len
            and add_eos_token
        ):
            result["input_ids"].append(self.tokenizer.eos_token_id)
            result["attention_mask"].append(1)

        if result["input_ids"][0] == self.tokenizer.bos_token_id and strip_bos_token:
            result["input_ids"] = result["input_ids"][1:]
            result["attention_mask"] = result["attention_mask"][1:]

        result["labels"] = result["input_ids"].copy()
        return result


class AlpacaPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str):
        return (
            prompt["instruction"],
            prompt["input"] if "input" in prompt else "",
            prompt["output"],
        )


class AlpacaMultipleChoicePromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str):
        return (
            prompt["question"],
            "\n".join(f'- "{choice}"' for choice in prompt["choices"]),
            prompt["solution"] if "solution" in prompt else prompt["explanation"],
        )


class JeopardyPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str):
        return (
            prompt["question"],
            prompt["category"],
            "what is " + prompt["answer"],
        )


class OpenAssistantPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str):
        return (
            prompt["INSTRUCTION"],
            "",
            prompt["RESPONSE"],
        )


class SummarizeTLDRPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str):
        return (
            prompt["article"],
            "",
            prompt["summary"],
        )


class GPTeacherPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str):
        return (
            prompt["instruction"],
            prompt["input"] if "input" in prompt else "",
            prompt["response"],
        )


class NomicGPT4AllPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str):
        return (
            prompt["prompt"],
            "",
            prompt["response"],
        )


class CompletionPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> str:
        return prompt["text"]

    def tokenize_prompt(self, prompt):
        instruction = self.parse_instruction_fields(prompt)
        full_prompt = self._build_full_prompt(instruction, None, None)
        tokenized_full_prompt = self._tokenize(full_prompt)

        return tokenized_full_prompt

    def _build_full_prompt(self, instruction, input, response):
        return next(iter(self.prompter.build_prompt(instruction)))


class ReflectionPromptTokenizingStrategy(PromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str, str, str):
        raise NotImplementedError

    def tokenize_prompt(self, prompt):
        (
            instruction,
            input,
            output,
            reflection,
            corrected,
        ) = self.parse_instruction_fields(prompt)
        full_prompt = self._build_full_prompt(
            instruction, input, output, reflection, corrected
        )
        tokenized_full_prompt = self._tokenize(full_prompt)
        if not self.train_on_inputs:
            user_prompt = next(
                iter(
                    self.prompter.build_prompt(
                        instruction,
                        input,
                    )
                )
            )
            tokenized_user_prompt = self._tokenize(user_prompt, add_eos_token=False)
            user_prompt_len = len(tokenized_user_prompt["input_ids"])
            # TODO this could be sped up using numpy array slicing
            tokenized_full_prompt["labels"] = [
                -100
            ] * user_prompt_len + tokenized_full_prompt["labels"][user_prompt_len:]

        return tokenized_full_prompt

    def _build_full_prompt(self, instruction, input, output, reflection, corrected):
        return next(
            iter(
                self.prompter.build_prompt(
                    instruction,
                    input,
                    output,
                    reflection,
                    corrected,
                )
            )
        )

    def _tokenize(self, prompt, add_eos_token=True):
        result = self.tokenizer(
            prompt,
            truncation=True,
            max_length=self.sequence_len,
            padding=False,
            return_tensors=None,
        )
        if (
            result["input_ids"][-1] != self.tokenizer.eos_token_id
            and len(result["input_ids"]) < self.sequence_len
            and add_eos_token
        ):
            result["input_ids"].append(self.tokenizer.eos_token_id)
            result["attention_mask"].append(1)

        result["labels"] = result["input_ids"].copy()
        return result


class AlpacaReflectionPTStrategy(ReflectionPromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str, str, str):
        return (
            prompt["instruction"],
            prompt["input"] if "input" in prompt else "",
            prompt["output"],
            prompt["reflection"],
            prompt["corrected"],
        )


class ShareGPTPromptTokenizingStrategy(PromptTokenizingStrategy):
    def tokenize_prompt(self, prompt):
        result = {
            "input_ids": [],
            "attention_mask": [],
            "labels": [],
        }
        current_len = 0
        user_token = self._get_user_token()
        assistant_token = self._get_assistant_token()
        try:
            for i, part in enumerate(
                self.prompter.build_prompt(prompt["conversations"])
            ):
                if isinstance(part, tuple):
                    if part[0] == "USER:":
                        part = part[0] + part[1] if not user_token else part[1]
                        # this is still the user query, we should
                        res = self._tokenize(
                            part.strip(), add_eos_token=False, strip_bos_token=True
                        )
                        if user_token:
                            res["input_ids"] = [user_token, *res["input_ids"]]
                        # everything from this is masked out from the labels
                        labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
                    elif part[0] == "ASSISTANT:":
                        # TODO label assistant token/tokens w/ IGNORE_TOKEN_ID
                        part = part[0] + part[1] if not assistant_token else part[1]
                        # this should be the assistent response, should end with an eos token
                        res = self._tokenize(
                            part.strip(), add_eos_token=True, strip_bos_token=True
                        )
                        if assistant_token:
                            res["input_ids"] = [assistant_token, *res["input_ids"]]
                        # not masked out from labels
                        labels = copy.deepcopy(res["input_ids"])
                    else:
                        logging.warning("unhandled role: " + part[0])
                else:
                    # this is only ever the first part, should include the bos token and the user query
                    res = self._tokenize(
                        part.strip(), add_eos_token=False, strip_bos_token=False
                    )
                    # everything from this is masked out from the labels
                    labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
                input_ids = res["input_ids"]
                input_len = len(input_ids)
                result["input_ids"][current_len : current_len + input_len] = input_ids
                result["attention_mask"][current_len : current_len + input_len] = [
                    1 if x != self.tokenizer.pad_token_id else 0 for x in input_ids
                ]
                result["labels"][current_len : current_len + input_len] = labels
                current_len += input_len
            return result
        except (KeyError, AssertionError, IndexError) as e:
            raise InvalidDataException(str(e))

    def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False):
        result = self.tokenizer(
            prompt,
            truncation=True,
            max_length=self.sequence_len,
            padding=False,
            return_tensors=None,
        )
        if (
            result["input_ids"][-1] != self.tokenizer.eos_token_id
            and len(result["input_ids"]) < self.sequence_len
            and add_eos_token
        ):
            result["input_ids"].append(self.tokenizer.eos_token_id)
            result["attention_mask"].append(1)

        if result["input_ids"][0] == self.tokenizer.bos_token_id and strip_bos_token:
            result["input_ids"] = result["input_ids"][1:]
            result["attention_mask"] = result["attention_mask"][1:]

        result["labels"] = result["input_ids"].copy()
        return result