liuyizhang commited on
Commit
5836895
·
1 Parent(s): c3f7ca9

update app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -75
app.py CHANGED
@@ -58,6 +58,26 @@ from diffusers import StableDiffusionInpaintPipeline
58
  from huggingface_hub import hf_hub_download
59
 
60
  from utils import computer_info
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
63
  args = SLConfig.fromfile(model_config_path)
@@ -224,55 +244,50 @@ def mix_masks(imgs):
224
  re_img = 1 - re_img
225
  return Image.fromarray(np.uint8(255*re_img))
226
 
227
- config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
228
- ckpt_repo_id = "ShilongLiu/GroundingDINO"
229
- ckpt_filenmae = "groundingdino_swint_ogc.pth"
230
- sam_checkpoint = './sam_vit_h_4b8939.pth'
231
- output_dir = "outputs"
232
- device = evice = 'cuda' if torch.cuda.is_available() else 'cpu'
233
-
234
- print(f'device={device}')
235
-
236
- # make dir
237
- os.makedirs(output_dir, exist_ok=True)
238
-
239
- # initialize groundingdino model
240
- logger.info(f"initialize groundingdino model...")
241
- groundingdino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
242
-
243
- # initialize SAM
244
- logger.info(f"initialize SAM model...")
245
- sam_device = device
246
- sam_model = build_sam(checkpoint=sam_checkpoint).to(sam_device)
247
- sam_predictor = SamPredictor(sam_model)
248
- sam_mask_generator = SamAutomaticMaskGenerator(sam_model)
249
-
250
- os.system("pip list")
251
- # initialize stable-diffusion-inpainting
252
- logger.info(f"initialize stable-diffusion-inpainting...")
253
- sd_pipe = None
254
- if os.environ.get('IS_MY_DEBUG') is None:
255
- sd_pipe = StableDiffusionInpaintPipeline.from_pretrained(
256
- "runwayml/stable-diffusion-inpainting",
257
- # revision="fp16",
258
- # "stabilityai/stable-diffusion-2-inpainting",
259
- torch_dtype=torch.float16,
260
- )
261
- sd_pipe = sd_pipe.to(device)
262
-
263
- # initialize lama_cleaner
264
- logger.info(f"initialize lama_cleaner...")
265
- from lama_cleaner.helper import (
266
- load_img,
267
- numpy_to_bytes,
268
- resize_max_size,
269
- )
270
-
271
- lama_cleaner_model = ModelManager(
272
- name='lama',
273
- device='cpu', # device,
274
  )
275
 
 
 
 
 
 
276
  def lama_cleaner_process(image, mask):
277
  ori_image = image
278
  if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
@@ -330,32 +345,6 @@ def lama_cleaner_process(image, mask):
330
  image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
331
  return image
332
 
333
- # relate anything
334
- from ram_utils import iou, sort_and_deduplicate, relation_classes, MLP, show_anns, ram_show_mask
335
- from ram_train_eval import RamModel,RamPredictor
336
- from mmengine.config import Config as mmengine_Config
337
- input_size = 512
338
- hidden_size = 256
339
- num_classes = 56
340
-
341
- # load ram model
342
- model_path = "./checkpoints/ram_epoch12.pth"
343
- ram_config = dict(
344
- model=dict(
345
- pretrained_model_name_or_path='bert-base-uncased',
346
- load_pretrained_weights=False,
347
- num_transformer_layer=2,
348
- input_feature_size=256,
349
- output_feature_size=768,
350
- cls_feature_size=512,
351
- num_relation_classes=56,
352
- pred_type='attention',
353
- loss_type='multi_label_ce',
354
- ),
355
- load_from=model_path,
356
- )
357
- ram_config = mmengine_Config(ram_config)
358
-
359
  class Ram_Predictor(RamPredictor):
360
  def __init__(self, config, device='cpu'):
361
  self.config = config
@@ -368,7 +357,25 @@ class Ram_Predictor(RamPredictor):
368
  self.model.load_state_dict(torch.load(self.config.load_from, map_location=self.device))
369
  self.model.train()
370
 
371
- ram_model = Ram_Predictor(ram_config, device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372
 
373
  # visualization
374
  def draw_selected_mask(mask, draw):
@@ -531,7 +538,6 @@ def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_t
531
  except:
532
  warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!")
533
 
534
- groundingdino_device = 'cpu'
535
  boxes_filt, pred_phrases = get_grounding_output(
536
  groundingdino_model, image, text_prompt, box_threshold, text_threshold, device=groundingdino_device
537
  )
@@ -676,6 +682,15 @@ if __name__ == "__main__":
676
 
677
  print(f'args = {args}')
678
 
 
 
 
 
 
 
 
 
 
679
  block = gr.Blocks().queue()
680
  with block:
681
  with gr.Row():
 
58
  from huggingface_hub import hf_hub_download
59
 
60
  from utils import computer_info
61
+ # relate anything
62
+ from ram_utils import iou, sort_and_deduplicate, relation_classes, MLP, show_anns, ram_show_mask
63
+ from ram_train_eval import RamModel,RamPredictor
64
+ from mmengine.config import Config as mmengine_Config
65
+
66
+ config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
67
+ ckpt_repo_id = "ShilongLiu/GroundingDINO"
68
+ ckpt_filenmae = "groundingdino_swint_ogc.pth"
69
+ sam_checkpoint = './sam_vit_h_4b8939.pth'
70
+ output_dir = "outputs"
71
+ device = 'cpu'
72
+
73
+ os.makedirs(output_dir, exist_ok=True)
74
+ groundingdino_model = None
75
+ sam_model = None
76
+ sam_predictor = None
77
+ sam_mask_generator = None
78
+ sd_pipe = None
79
+ lama_cleaner_model= None
80
+ ram_model = None
81
 
82
  def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
83
  args = SLConfig.fromfile(model_config_path)
 
244
  re_img = 1 - re_img
245
  return Image.fromarray(np.uint8(255*re_img))
246
 
247
+ def set_device():
248
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
249
+ print(f'device={device}')
250
+
251
+ def load_groundingdino_model():
252
+ # initialize groundingdino model
253
+ logger.info(f"initialize groundingdino model...")
254
+ groundingdino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
255
+
256
+ def load_sam_model():
257
+ # initialize SAM
258
+ logger.info(f"initialize SAM model...")
259
+ sam_device = device
260
+ sam_model = build_sam(checkpoint=sam_checkpoint).to(sam_device)
261
+ sam_predictor = SamPredictor(sam_model)
262
+ sam_mask_generator = SamAutomaticMaskGenerator(sam_model)
263
+
264
+ def load_sd_model():
265
+ # initialize stable-diffusion-inpainting
266
+ logger.info(f"initialize stable-diffusion-inpainting...")
267
+ sd_pipe = None
268
+ if os.environ.get('IS_MY_DEBUG') is None:
269
+ sd_pipe = StableDiffusionInpaintPipeline.from_pretrained(
270
+ "runwayml/stable-diffusion-inpainting",
271
+ # revision="fp16",
272
+ # "stabilityai/stable-diffusion-2-inpainting",
273
+ torch_dtype=torch.float16,
274
+ )
275
+ sd_pipe = sd_pipe.to(device)
276
+
277
+ def load_lama_cleaner_model():
278
+ # initialize lama_cleaner
279
+ logger.info(f"initialize lama_cleaner...")
280
+ from lama_cleaner.helper import (
281
+ load_img,
282
+ numpy_to_bytes,
283
+ resize_max_size,
 
 
 
 
 
 
 
 
 
 
284
  )
285
 
286
+ lama_cleaner_model = ModelManager(
287
+ name='lama',
288
+ device='cpu', # device,
289
+ )
290
+
291
  def lama_cleaner_process(image, mask):
292
  ori_image = image
293
  if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
 
345
  image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
346
  return image
347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348
  class Ram_Predictor(RamPredictor):
349
  def __init__(self, config, device='cpu'):
350
  self.config = config
 
357
  self.model.load_state_dict(torch.load(self.config.load_from, map_location=self.device))
358
  self.model.train()
359
 
360
+ def load_ram_model():
361
+ # load ram model
362
+ model_path = "./checkpoints/ram_epoch12.pth"
363
+ ram_config = dict(
364
+ model=dict(
365
+ pretrained_model_name_or_path='bert-base-uncased',
366
+ load_pretrained_weights=False,
367
+ num_transformer_layer=2,
368
+ input_feature_size=256,
369
+ output_feature_size=768,
370
+ cls_feature_size=512,
371
+ num_relation_classes=56,
372
+ pred_type='attention',
373
+ loss_type='multi_label_ce',
374
+ ),
375
+ load_from=model_path,
376
+ )
377
+ ram_config = mmengine_Config(ram_config)
378
+ ram_model = Ram_Predictor(ram_config, device)
379
 
380
  # visualization
381
  def draw_selected_mask(mask, draw):
 
538
  except:
539
  warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!")
540
 
 
541
  boxes_filt, pred_phrases = get_grounding_output(
542
  groundingdino_model, image, text_prompt, box_threshold, text_threshold, device=groundingdino_device
543
  )
 
682
 
683
  print(f'args = {args}')
684
 
685
+ os.system("pip list")
686
+
687
+ set_device()
688
+ load_groundingdino_model()
689
+ load_sam_model()
690
+ load_sd_model()
691
+ load_lama_cleaner_model()
692
+ load_ram_model()
693
+
694
  block = gr.Blocks().queue()
695
  with block:
696
  with gr.Row():