Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ultralytics import YOLO
|
2 |
+
import cv2
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load YOLOv8 model
|
7 |
+
model = YOLO('yolov8n.pt')
|
8 |
+
|
9 |
+
# Set the stream URL
|
10 |
+
stream_url = "https://edge01.london.nginx.hdontap.com/hosb5/ng_showcase-coke_bottle-street_fixed.stream/chunklist_w464099566.m3u8"
|
11 |
+
|
12 |
+
# Low-resolution for inference
|
13 |
+
LOW_RES = (320, 180)
|
14 |
+
|
15 |
+
def detect_and_draw(frame):
|
16 |
+
# Resize frame to low resolution for faster inference
|
17 |
+
low_res_frame = cv2.resize(frame, LOW_RES)
|
18 |
+
|
19 |
+
# Perform YOLOv8 inference
|
20 |
+
results = model(low_res_frame)
|
21 |
+
|
22 |
+
# Scale bounding boxes
|
23 |
+
scale_x = frame.shape[1] / LOW_RES[0]
|
24 |
+
scale_y = frame.shape[0] / LOW_RES[1]
|
25 |
+
|
26 |
+
# Draw bounding boxes on high-res frame
|
27 |
+
for detection in results[0].boxes.data:
|
28 |
+
x1, y1, x2, y2, conf, cls = detection
|
29 |
+
x1, y1, x2, y2 = int(x1*scale_x), int(y1*scale_y), int(x2*scale_x), int(y2*scale_y)
|
30 |
+
label = f"{results[0].names[int(cls)]} {conf:.2f}"
|
31 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
32 |
+
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
33 |
+
|
34 |
+
return frame
|
35 |
+
|
36 |
+
def process_stream():
|
37 |
+
cap = cv2.VideoCapture(stream_url)
|
38 |
+
frame_count = 0
|
39 |
+
while cap.isOpened():
|
40 |
+
ret, frame = cap.read()
|
41 |
+
if not ret:
|
42 |
+
break
|
43 |
+
|
44 |
+
frame_count += 3
|
45 |
+
if frame_count % 30 == 0: # Process every 30th frame
|
46 |
+
result = detect_and_draw(frame)
|
47 |
+
result_rgb = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
|
48 |
+
yield result_rgb
|
49 |
+
|
50 |
+
cap.release()
|
51 |
+
|
52 |
+
# Gradio interface for live video stream
|
53 |
+
iface = gr.Interface(
|
54 |
+
fn=process_stream,
|
55 |
+
inputs=None,
|
56 |
+
outputs="image",
|
57 |
+
live=True,
|
58 |
+
title="YOLOv8 Real-Time Object Detection",
|
59 |
+
description="Live stream processed with YOLOv8 for real-time object detection."
|
60 |
+
)
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
if torch.cuda.is_available():
|
64 |
+
model.to('cuda')
|
65 |
+
iface.queue()
|
66 |
+
iface.launch()
|