DoanMinhTri
commited on
Commit
·
77e422b
1
Parent(s):
c358fb8
Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,20 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
"ÒA": "OÀ",
|
10 |
-
"óa": "oá",
|
11 |
-
"Óa": "Oá",
|
12 |
-
"ÓA": "OÁ",
|
13 |
-
"ỏa": "oả",
|
14 |
-
"Ỏa": "Oả",
|
15 |
-
"ỎA": "OẢ",
|
16 |
-
"õa": "oã",
|
17 |
-
"Õa": "Oã",
|
18 |
-
"ÕA": "OÃ",
|
19 |
-
"ọa": "oạ",
|
20 |
-
"Ọa": "Oạ",
|
21 |
-
"ỌA": "OẠ",
|
22 |
-
"òe": "oè",
|
23 |
-
"Òe": "Oè",
|
24 |
-
"ÒE": "OÈ",
|
25 |
-
"óe": "oé",
|
26 |
-
"Óe": "Oé",
|
27 |
-
"ÓE": "OÉ",
|
28 |
-
"ỏe": "oẻ",
|
29 |
-
"Ỏe": "Oẻ",
|
30 |
-
"ỎE": "OẺ",
|
31 |
-
"õe": "oẽ",
|
32 |
-
"Õe": "Oẽ",
|
33 |
-
"ÕE": "OẼ",
|
34 |
-
"ọe": "oẹ",
|
35 |
-
"Ọe": "Oẹ",
|
36 |
-
"ỌE": "OẸ",
|
37 |
-
"ùy": "uỳ",
|
38 |
-
"Ùy": "Uỳ",
|
39 |
-
"ÙY": "UỲ",
|
40 |
-
"úy": "uý",
|
41 |
-
"Úy": "Uý",
|
42 |
-
"ÚY": "UÝ",
|
43 |
-
"ủy": "uỷ",
|
44 |
-
"Ủy": "Uỷ",
|
45 |
-
"ỦY": "UỶ",
|
46 |
-
"ũy": "uỹ",
|
47 |
-
"Ũy": "Uỹ",
|
48 |
-
"ŨY": "UỸ",
|
49 |
-
"ụy": "uỵ",
|
50 |
-
"Ụy": "Uỵ",
|
51 |
-
"ỤY": "UỴ",
|
52 |
-
}
|
53 |
-
|
54 |
-
tokenizer_vi2en = AutoTokenizer.from_pretrained("vinai/vinai-translate-vi2en-v2", src_lang="vi_VN")
|
55 |
-
model_vi2en = AutoModelForSeq2SeqLM.from_pretrained("vinai/vinai-translate-vi2en-v2")
|
56 |
|
57 |
def translate_vi2en(vi_text: str) -> str:
|
58 |
-
for i, j in dict_map.items():
|
59 |
-
vi_text = vi_text.replace(i, j)
|
60 |
input_ids = tokenizer_vi2en(vi_text, return_tensors="pt").input_ids
|
61 |
output_ids = model_vi2en.generate(
|
62 |
input_ids,
|
63 |
decoder_start_token_id=tokenizer_vi2en.lang_code_to_id["en_XX"],
|
64 |
num_return_sequences=1,
|
65 |
# # With sampling
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
# With beam search
|
70 |
num_beams=5,
|
71 |
early_stopping=True
|
@@ -74,8 +23,9 @@ def translate_vi2en(vi_text: str) -> str:
|
|
74 |
en_text = " ".join(en_text)
|
75 |
return en_text
|
76 |
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
def translate_en2vi(en_text: str) -> str:
|
81 |
input_ids = tokenizer_en2vi(en_text, return_tensors="pt").input_ids
|
@@ -83,10 +33,10 @@ def translate_en2vi(en_text: str) -> str:
|
|
83 |
input_ids,
|
84 |
decoder_start_token_id=tokenizer_en2vi.lang_code_to_id["vi_VN"],
|
85 |
num_return_sequences=1,
|
86 |
-
#
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
# With beam search
|
91 |
num_beams=5,
|
92 |
early_stopping=True
|
@@ -95,35 +45,46 @@ def translate_en2vi(en_text: str) -> str:
|
|
95 |
vi_text = " ".join(vi_text)
|
96 |
return vi_text
|
97 |
|
98 |
-
vi_example_text = ["
|
99 |
-
"
|
|
|
|
|
|
|
100 |
|
101 |
-
en_example_text = ["
|
102 |
-
"
|
|
|
|
|
|
|
103 |
|
104 |
-
|
|
|
|
|
|
|
105 |
with gr.Tabs():
|
106 |
-
with gr.TabItem("
|
107 |
with gr.Row():
|
108 |
with gr.Column():
|
109 |
vietnamese = gr.Textbox(label="Vietnamese Text")
|
110 |
-
|
111 |
with gr.Column():
|
112 |
english = gr.Textbox(label="English Text")
|
|
|
113 |
translate_to_english.click(lambda text: translate_vi2en(text), inputs=vietnamese, outputs=english)
|
114 |
gr.Examples(examples=vi_example_text,
|
115 |
inputs=[vietnamese])
|
116 |
|
117 |
-
with gr.TabItem("
|
118 |
with gr.Row():
|
119 |
with gr.Column():
|
120 |
english = gr.Textbox(label="English Text")
|
121 |
-
|
122 |
with gr.Column():
|
123 |
vietnamese = gr.Textbox(label="Vietnamese Text")
|
|
|
124 |
translate_to_vietnamese.click(lambda text: translate_en2vi(text), inputs=english, outputs=vietnamese)
|
125 |
gr.Examples(examples=en_example_text,
|
126 |
inputs=[english])
|
127 |
|
128 |
if __name__ == "__main__":
|
129 |
-
demo.launch()
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
|
4 |
+
md_name1 = "vinai/vinai-translate-vi2en-v2"
|
5 |
+
tokenizer_vi2en = AutoTokenizer.from_pretrained(md_name1, src_lang="vi_VN")
|
6 |
+
model_vi2en = AutoModelForSeq2SeqLM.from_pretrained(md_name1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def translate_vi2en(vi_text: str) -> str:
|
|
|
|
|
9 |
input_ids = tokenizer_vi2en(vi_text, return_tensors="pt").input_ids
|
10 |
output_ids = model_vi2en.generate(
|
11 |
input_ids,
|
12 |
decoder_start_token_id=tokenizer_vi2en.lang_code_to_id["en_XX"],
|
13 |
num_return_sequences=1,
|
14 |
# # With sampling
|
15 |
+
do_sample=True,
|
16 |
+
top_k=100,
|
17 |
+
top_p=0.8,
|
18 |
# With beam search
|
19 |
num_beams=5,
|
20 |
early_stopping=True
|
|
|
23 |
en_text = " ".join(en_text)
|
24 |
return en_text
|
25 |
|
26 |
+
md_name2 = "vinai/vinai-translate-en2vi-v2"
|
27 |
+
tokenizer_en2vi = AutoTokenizer.from_pretrained(md_name2, src_lang="en_XX")
|
28 |
+
model_en2vi = AutoModelForSeq2SeqLM.from_pretrained(md_name2)
|
29 |
|
30 |
def translate_en2vi(en_text: str) -> str:
|
31 |
input_ids = tokenizer_en2vi(en_text, return_tensors="pt").input_ids
|
|
|
33 |
input_ids,
|
34 |
decoder_start_token_id=tokenizer_en2vi.lang_code_to_id["vi_VN"],
|
35 |
num_return_sequences=1,
|
36 |
+
# With sampling
|
37 |
+
do_sample=True,
|
38 |
+
top_k=100,
|
39 |
+
top_p=0.8,
|
40 |
# With beam search
|
41 |
num_beams=5,
|
42 |
early_stopping=True
|
|
|
45 |
vi_text = " ".join(vi_text)
|
46 |
return vi_text
|
47 |
|
48 |
+
vi_example_text = ["Xin chào, chúng tôi là nhóm 01, bao gồm 3 thành viên: Minh Trí, Kim Thanh và Hồng Ngọc",
|
49 |
+
"Chúng ta đang từng bước học cách trở nên tốt đẹp hơn!",
|
50 |
+
"Bạn có phải là người chăm chỉ?",
|
51 |
+
"Luận văn thạc sĩ Khoa học Máy tính",
|
52 |
+
"Hãy sống như những đoá hoa toả ngát hương thơm"]
|
53 |
|
54 |
+
en_example_text = ["Life is countless days of trying.",
|
55 |
+
"Always remember, what doesn't kill you makes you stronger",
|
56 |
+
"What's up man?",
|
57 |
+
"How could you...?",
|
58 |
+
"Could you do me a favor?"]
|
59 |
|
60 |
+
# GIAO DIỆN WEB MACHINE TRANSLATION
|
61 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Charmed's One MT") as demo:
|
62 |
+
with gr.Row():
|
63 |
+
test = gr.Text(label="MACHINE TRANSLATION", value="The Application of English-Vietnamese automatic translation was created by The Power of Three: Doan Minh Tri, Che Thi Kim Thanh and Nguyen Thi Hong Ngoc",)
|
64 |
with gr.Tabs():
|
65 |
+
with gr.TabItem("VIETNAMESE TO ENGLISH"):
|
66 |
with gr.Row():
|
67 |
with gr.Column():
|
68 |
vietnamese = gr.Textbox(label="Vietnamese Text")
|
69 |
+
gr.ClearButton(vietnamese)
|
70 |
with gr.Column():
|
71 |
english = gr.Textbox(label="English Text")
|
72 |
+
translate_to_english = gr.Button(value="Translate To English")
|
73 |
translate_to_english.click(lambda text: translate_vi2en(text), inputs=vietnamese, outputs=english)
|
74 |
gr.Examples(examples=vi_example_text,
|
75 |
inputs=[vietnamese])
|
76 |
|
77 |
+
with gr.TabItem("ENGLISH TO VIETNAMESE"):
|
78 |
with gr.Row():
|
79 |
with gr.Column():
|
80 |
english = gr.Textbox(label="English Text")
|
81 |
+
gr.ClearButton(english)
|
82 |
with gr.Column():
|
83 |
vietnamese = gr.Textbox(label="Vietnamese Text")
|
84 |
+
translate_to_vietnamese = gr.Button(value="Translate To Vietnamese")
|
85 |
translate_to_vietnamese.click(lambda text: translate_en2vi(text), inputs=english, outputs=vietnamese)
|
86 |
gr.Examples(examples=en_example_text,
|
87 |
inputs=[english])
|
88 |
|
89 |
if __name__ == "__main__":
|
90 |
+
demo.launch(share=True) #share=True NẾU MUỐN ONLINE
|