|
import torch |
|
import tensorflow as tf |
|
import gradio as gr |
|
from tokenizers import Tokenizer |
|
from Seq2SeqModel import Seq2SeqModel |
|
from KTEPreprocess import preprocess |
|
from Decoder import Decoder |
|
from Encoder import Encoder |
|
|
|
n_layers = 2 |
|
emb_dim = 256 |
|
hid_dim = 512 |
|
dropout = 0.5 |
|
device = torch.device('cpu') |
|
|
|
|
|
(klingon_tokenizer, english_tokenizer, output_dim,input_dim, |
|
klingon_train_padded, english_train_input, english_train_target, |
|
klingon_test_padded, english_test_input, english_test_target, |
|
max_length_klingon, max_length_english) = preprocess() |
|
|
|
|
|
encoder = Encoder(output_dim, emb_dim, hid_dim, n_layers, dropout).to(device) |
|
decoder = Decoder(input_dim, emb_dim, hid_dim, n_layers, dropout).to(device) |
|
|
|
|
|
model = Seq2SeqModel(encoder, decoder, device).to(device) |
|
model.load_state_dict(torch.load('BPE_Klingon_to_English_1.pth', map_location=torch.device('cpu'))) |
|
model.eval() |
|
|
|
|
|
def preprocess_sentence(sentence, tokenizer, max_length): |
|
tokenized_sentence = tokenizer.encode(sentence).ids |
|
padded_sentence = tf.keras.preprocessing.sequence.pad_sequences([tokenized_sentence], maxlen=max_length, padding='post') |
|
return torch.tensor(padded_sentence, dtype=torch.long).to(device) |
|
|
|
|
|
def translate_klingon_to_english(klingon_sentence): |
|
print(f"Original Klingon sentence: {klingon_sentence}") |
|
|
|
input_sentence = preprocess_sentence(klingon_sentence, klingon_tokenizer, max_length_klingon) |
|
print(f"Tokenized and padded input sentence: {input_sentence.tolist()}") |
|
|
|
if input_sentence.numpy().sum() == 0: |
|
print("Warning: Input sentence is empty or out of vocabulary after tokenization.") |
|
input_sentence = input_sentence.squeeze(0) |
|
|
|
with torch.no_grad(): |
|
output = model(input_sentence.unsqueeze(1), input_sentence.unsqueeze(1), 0) |
|
print(f"Model raw output (logits): {output}") |
|
|
|
output_indices = torch.argmax(output, dim=-1).squeeze().tolist() |
|
english_sentence = english_tokenizer.decode(output_indices, skip_special_tokens=True) |
|
print(f"Decoded English sentence: {english_sentence}") |
|
|
|
return english_sentence |
|
|
|
|
|
examples = [ |
|
["nuqneH! DaHjaj SuvwI'"], |
|
["tlhIngan Hol vIjatlh"], |
|
["SopwI' SoH"], |
|
] |
|
|
|
iface = gr.Interface( |
|
fn=translate_klingon_to_english, |
|
inputs=gr.Textbox(label="Klingon Phrase", lines=2, placeholder="Enter Klingon text here..."), |
|
outputs=gr.Textbox(label="English Translation", lines=2), |
|
title="Klingon to English Translation", |
|
description="Enter text in Klingon and get its translation in English. This translator helps you understand the language of the Klingon species from the Star Trek universe.", |
|
examples=examples, |
|
theme="default" |
|
) |
|
|
|
iface.launch() |
|
|