Spaces:
Sleeping
Sleeping
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
import tensorflow as tf | |
class_names = ['Covid19','Normal','Viral Pneumonia'] | |
def process_image(image): | |
image = image.resize((224,224)) | |
image = np.array(image) / 255.0 | |
image = np.expand_dims(image, axis=0) # (224,224,3) | |
return image | |
model = tf.keras.models.load_model('Covid19_Model.h5') | |
def predict_image(image): | |
processed_image = process_image(image) | |
prediction = model.predict(processed_image) | |
predicted_class_index = np.argmax(prediction) # ---> [0.23,0.58,0.86] | |
predicted_class_name = class_names[predicted_class_index] | |
return f"Prediction: {predicted_class_name}" | |
examples = ['Samples/064.jpeg', | |
'Samples/072.jpeg', | |
'Samples/076.jpeg'] | |
# Samples\076.jpeg | |
interface = gr.Interface(fn= predict_image, | |
inputs= gr.Image(type="pil"), | |
outputs='text', | |
title= "Covid19, Viral pneumonia or Normal", | |
description="import an image to get predictions", | |
examples=examples) | |
interface.launch() |