Diaa-Zaher's picture
Add application file
a51de7b
raw
history blame
1.28 kB
import gradio as gr
from PIL import Image
import numpy as np
import tensorflow as tf
class_names = ['Covid19','Normal','Viral Pneumonia']
def process_image(image):
image = image.resize((224,224))
image = np.array(image) / 255.0
image = np.expand_dims(image, axis=0) # (224,224,3)
return image
model = tf.keras.models.load_model('Covid19_Model.h5')
def predict_image(image):
processed_image = process_image(image)
prediction = model.predict(processed_image)
predicted_class_index = np.argmax(prediction)
predicted_class_name = class_names[predicted_class_index]
return f"Prediction: {predicted_class_name}"
examples = ['D:/Machine Learning Course/Covid19_Deployment/Covid19-viral-normal/Samples/064.jpeg',
'D:/Machine Learning Course/Covid19_Deployment/Covid19-viral-normal/Samples/072.jpeg',
'D:/Machine Learning Course/Covid19_Deployment/Covid19-viral-normal/Samples/076.jpeg']
interface = gr.Interface(fn= predict_image,
inputs= gr.Image(type="pil"),
outputs='text',
title= "Covid19, Viral pneumonia or Normal",
description="import an image to get predictions",
examples=examples)
interface.launch()