File size: 6,285 Bytes
aa2b9a2
 
 
 
 
 
 
58ca1a1
aa2b9a2
 
 
58ca1a1
aa2b9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ca1a1
aa2b9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
58ca1a1
aa2b9a2
 
 
 
 
 
 
58ca1a1
aa2b9a2
 
58ca1a1
aa2b9a2
 
 
 
58ca1a1
aa2b9a2
58ca1a1
aa2b9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ca1a1
aa2b9a2
 
 
 
 
 
 
 
 
58ca1a1
 
aa2b9a2
 
 
 
 
 
 
 
 
 
 
 
 
58ca1a1
aa2b9a2
 
 
 
 
 
 
 
58ca1a1
 
 
 
 
 
 
 
 
 
 
 
 
aa2b9a2
 
 
58ca1a1
aa2b9a2
 
 
 
58ca1a1
aa2b9a2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Code copied and modified from https://huggingface.co/spaces/BAAI/SegVol/blob/main/utils.py

from pathlib import Path

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import SimpleITK as sitk
import torch
from mrsegmentator import inference
from mrsegmentator.utils import add_postfix
from PIL import Image
from scipy import ndimage

import streamlit as st

initial_rectangle = {
    "version": "4.4.0",
    "objects": [
        {
            "type": "rect",
            "version": "4.4.0",
            "originX": "left",
            "originY": "top",
            "left": 50,
            "top": 50,
            "width": 100,
            "height": 100,
            "fill": "rgba(255, 165, 0, 0.3)",
            "stroke": "#2909F1",
            "strokeWidth": 3,
            "strokeDashArray": None,
            "strokeLineCap": "butt",
            "strokeDashOffset": 0,
            "strokeLineJoin": "miter",
            "strokeUniform": True,
            "strokeMiterLimit": 4,
            "scaleX": 1,
            "scaleY": 1,
            "angle": 0,
            "flipX": False,
            "flipY": False,
            "opacity": 1,
            "shadow": None,
            "visible": True,
            "backgroundColor": "",
            "fillRule": "nonzero",
            "paintFirst": "fill",
            "globalCompositeOperation": "source-over",
            "skewX": 0,
            "skewY": 0,
            "rx": 0,
            "ry": 0,
        }
    ],
}


def run(tmpdirname):
    if st.session_state.option is not None:
        image = Path(__file__).parent / str(st.session_state.option)

        inference.infer([image], tmpdirname, st.session_state.folds, split_level=1)
        seg_name = add_postfix(image.name, "seg")
        preds_path = tmpdirname + "/" + seg_name
        st.session_state.preds_3D = read_image(preds_path)
        st.session_state.preds_3D_ori = sitk.ReadImage(preds_path)


def reflect_box_into_model(box_3d):
    z1, y1, x1, z2, y2, x2 = box_3d
    x1_prompt = int(x1 * 256.0 / 325.0)
    y1_prompt = int(y1 * 256.0 / 325.0)
    z1_prompt = int(z1 * 32.0 / 325.0)
    x2_prompt = int(x2 * 256.0 / 325.0)
    y2_prompt = int(y2 * 256.0 / 325.0)
    z2_prompt = int(z2 * 32.0 / 325.0)
    return torch.tensor(np.array([z1_prompt, y1_prompt, x1_prompt, z2_prompt, y2_prompt, x2_prompt]))


def reflect_json_data_to_3D_box(json_data, view):
    if view == "xy":
        st.session_state.rectangle_3Dbox[1] = json_data["objects"][0]["top"]
        st.session_state.rectangle_3Dbox[2] = json_data["objects"][0]["left"]
        st.session_state.rectangle_3Dbox[4] = (
            json_data["objects"][0]["top"] + json_data["objects"][0]["height"] * json_data["objects"][0]["scaleY"]
        )
        st.session_state.rectangle_3Dbox[5] = (
            json_data["objects"][0]["left"] + json_data["objects"][0]["width"] * json_data["objects"][0]["scaleX"]
        )
    print(st.session_state.rectangle_3Dbox)


def make_fig(image, preds, px_range=(10, 400), transparency=0.5):

    fig, ax = plt.subplots(1, 1, figsize=(4, 4))
    image_slice = image.clip(*px_range)

    ax.imshow(
        image_slice,
        cmap="Greys_r",
        vmin=px_range[0],
        vmax=px_range[1],
    )

    if preds is not None:
        image_slice = np.array(preds)
        alpha = np.zeros(image_slice.shape)
        alpha[image_slice > 0.1] = transparency
        ax.imshow(
            image_slice,
            cmap="jet",
            alpha=alpha,
            vmin=0,
            vmax=40,
        )

        # plot edges
        edge_slice = np.zeros(image_slice.shape, dtype=int)

        for i in np.unique(image_slice):
            _slice = image_slice.copy()
            _slice[_slice != i] = 0
            edges = ndimage.laplace(_slice)
            edge_slice[edges != 0] = i

        cmap = mpl.cm.jet(np.linspace(0, 1, int(preds.max())))
        cmap -= 0.4
        cmap = cmap.clip(0, 1)
        cmap = mpl.colors.ListedColormap(cmap)

        alpha = np.zeros(edge_slice.shape)
        alpha[edge_slice > 0.01] = 0.9

        ax.imshow(
            edge_slice,
            alpha=alpha,
            cmap=cmap,
            vmin=0,
            vmax=40,
        )

    plt.axis("off")
    ax.set_xticks([])
    ax.set_yticks([])

    fig.canvas.draw()

    # transform to image
    return Image.frombytes("RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb())


#######################################


def make_isotropic(image, interpolator=sitk.sitkLinear, spacing=None):
    """
    Many file formats (e.g. jpg, png,...) expect the pixels to be isotropic, same
    spacing for all axes. Saving non-isotropic data in these formats will result in
    distorted images. This function makes an image isotropic via resampling, if needed.
    Args:
        image (SimpleITK.Image): Input image.
        interpolator: By default the function uses a linear interpolator. For
                      label images one should use the sitkNearestNeighbor interpolator
                      so as not to introduce non-existant labels.
        spacing (float): Desired spacing. If none given then use the smallest spacing from
                         the original image.
    Returns:
        SimpleITK.Image with isotropic spacing which occupies the same region in space as
        the input image.
    """
    original_spacing = image.GetSpacing()
    # Image is already isotropic, just return a copy.
    if all(spc == original_spacing[0] for spc in original_spacing):
        return sitk.Image(image)
    # Make image isotropic via resampling.
    original_size = image.GetSize()
    if spacing is None:
        spacing = min(original_spacing)
    new_spacing = [spacing] * image.GetDimension()
    new_size = [int(round(osz * ospc / spacing)) for osz, ospc in zip(original_size, original_spacing)]
    return sitk.Resample(
        image,
        new_size,
        sitk.Transform(),
        interpolator,
        image.GetOrigin(),
        new_spacing,
        image.GetDirection(),
        0,  # default pixel value
        image.GetPixelID(),
    )


def read_image(path):

    img = sitk.ReadImage(path)
    img = sitk.DICOMOrient(img, "LPS")
    img = make_isotropic(img)
    img = sitk.GetArrayFromImage(img)

    return img