import gradio as gr import librosa from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch import librosa # load model and processor processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english") model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english") tokenizer = AutoTokenizer.from_pretrained("icon-it-tdtu/mt-en-vi-optimum") model_lm = ORTModelForSeq2SeqLM.from_pretrained("icon-it-tdtu/mt-en-vi-optimum") def process_audio_file(file): data, sr = librosa.load(file) if sr != 16000: data = librosa.resample(data, sr, 16000) inputs = processor(data, sampling_rate=16000, return_tensors="pt", padding=True) return inputs def transcribe(file, state=""): inputs = process_audio_file(file) with torch.no_grad(): output_logit = model(inputs.input_values).logits pred_ids = torch.argmax(output_logit, dim=-1) text = processor.batch_decode(pred_ids)[0].lower() print(text) text = translate(text) state += text + " " return state, state def translate(text): batch = tokenizer([text], return_tensors="pt") generated_ids = model_lm.generate(**batch) translated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return translated_text # Set the starting state to an empty string gr.Interface( fn=transcribe, inputs=[ gr.Audio(source="microphone", type="filepath", streaming=True), "state" ], outputs=[ "textbox", "state" ], live=True).launch(debug=True)