Spaces:
Build error
Build error
Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import librosa
|
3 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
+
import torch
|
6 |
+
import librosa
|
7 |
+
|
8 |
+
# load model and processor
|
9 |
+
processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english")
|
10 |
+
model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english")
|
11 |
+
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("icon-it-tdtu/mt-en-vi-optimum")
|
13 |
+
model_lm = ORTModelForSeq2SeqLM.from_pretrained("icon-it-tdtu/mt-en-vi-optimum")
|
14 |
+
|
15 |
+
def process_audio_file(file):
|
16 |
+
data, sr = librosa.load(file)
|
17 |
+
if sr != 16000:
|
18 |
+
data = librosa.resample(data, sr, 16000)
|
19 |
+
inputs = processor(data, sampling_rate=16000, return_tensors="pt", padding=True)
|
20 |
+
return inputs
|
21 |
+
|
22 |
+
|
23 |
+
def transcribe(file, state=""):
|
24 |
+
inputs = process_audio_file(file)
|
25 |
+
with torch.no_grad():
|
26 |
+
output_logit = model(inputs.input_values).logits
|
27 |
+
pred_ids = torch.argmax(output_logit, dim=-1)
|
28 |
+
text = processor.batch_decode(pred_ids)[0].lower()
|
29 |
+
print(text)
|
30 |
+
text = translate(text)
|
31 |
+
state += text + " "
|
32 |
+
return state, state
|
33 |
+
|
34 |
+
|
35 |
+
def translate(text):
|
36 |
+
batch = tokenizer([text], return_tensors="pt")
|
37 |
+
generated_ids = model_lm.generate(**batch)
|
38 |
+
translated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
39 |
+
return translated_text
|
40 |
+
|
41 |
+
|
42 |
+
# Set the starting state to an empty string
|
43 |
+
|
44 |
+
gr.Interface(
|
45 |
+
fn=transcribe,
|
46 |
+
inputs=[
|
47 |
+
gr.Audio(source="microphone", type="filepath", streaming=True),
|
48 |
+
"state"
|
49 |
+
],
|
50 |
+
outputs=[
|
51 |
+
"textbox",
|
52 |
+
"state"
|
53 |
+
],
|
54 |
+
live=True).launch(debug=True)
|