Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -5,8 +5,8 @@ import numpy as np
|
|
5 |
from scipy.spatial import distance as dist
|
6 |
|
7 |
from sahi.utils.cv import read_image_as_pil
|
8 |
-
from fastapi import FastAPI, File, UploadFile
|
9 |
-
from utils import tts, read_image_file, pil_to_base64,
|
10 |
from typing import Optional
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
|
@@ -26,14 +26,13 @@ def read_root():
|
|
26 |
@app.post("/aisatsu_api/")
|
27 |
async def predict_api(
|
28 |
file: UploadFile = File(...),
|
29 |
-
last_seen:
|
30 |
):
|
31 |
image = read_image_file(await file.read())
|
32 |
results = model.predict(image, show=False)[0]
|
33 |
image = read_image_as_pil(image)
|
34 |
masks, boxes = results.masks, results.boxes
|
35 |
area_image = image.width * image.height
|
36 |
-
voice_bot = None
|
37 |
most_close = 0
|
38 |
out_img = None
|
39 |
diff_value = 0.5
|
@@ -47,13 +46,23 @@ async def predict_api(
|
|
47 |
out_img = image.crop(tuple(box)).resize((64, 64))
|
48 |
most_close = area_rate
|
49 |
if last_seen is not None:
|
50 |
-
last_seen =
|
51 |
if out_img is not None:
|
52 |
diff_value = dist.euclidean(get_hist(out_img), get_hist(last_seen))
|
53 |
print(most_close, diff_value)
|
54 |
if most_close >= area_thres and diff_value >= 0.5:
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
"
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from scipy.spatial import distance as dist
|
6 |
|
7 |
from sahi.utils.cv import read_image_as_pil
|
8 |
+
from fastapi import FastAPI, File, UploadFile
|
9 |
+
from utils import tts, read_image_file, pil_to_base64, get_hist
|
10 |
from typing import Optional
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
|
|
|
26 |
@app.post("/aisatsu_api/")
|
27 |
async def predict_api(
|
28 |
file: UploadFile = File(...),
|
29 |
+
last_seen: Union[UploadFile, None] = File(None)
|
30 |
):
|
31 |
image = read_image_file(await file.read())
|
32 |
results = model.predict(image, show=False)[0]
|
33 |
image = read_image_as_pil(image)
|
34 |
masks, boxes = results.masks, results.boxes
|
35 |
area_image = image.width * image.height
|
|
|
36 |
most_close = 0
|
37 |
out_img = None
|
38 |
diff_value = 0.5
|
|
|
46 |
out_img = image.crop(tuple(box)).resize((64, 64))
|
47 |
most_close = area_rate
|
48 |
if last_seen is not None:
|
49 |
+
last_seen = read_image_file(await last_seen.read())
|
50 |
if out_img is not None:
|
51 |
diff_value = dist.euclidean(get_hist(out_img), get_hist(last_seen))
|
52 |
print(most_close, diff_value)
|
53 |
if most_close >= area_thres and diff_value >= 0.5:
|
54 |
+
voice_bot_path = tts(defaul_bot_voice, language="ja")
|
55 |
+
image_bot_path = pil_to_base64(out_img)
|
56 |
+
io = BytesIO()
|
57 |
+
zip_filename = "final_archive.zip"
|
58 |
+
with zipfile.ZipFile(io, mode='w', compression=zipfile.ZIP_DEFLATED) as zf:
|
59 |
+
for file_path in [voice_bot_path, image_bot_path]:
|
60 |
+
zf.write(file_path)
|
61 |
+
zf.close()
|
62 |
+
return StreamingResponse(
|
63 |
+
iter([io.getvalue()]),
|
64 |
+
media_type="application/x-zip-compressed",
|
65 |
+
headers={"Content-Disposition": f"attachment;filename=%s" % zip_filename}
|
66 |
+
)
|
67 |
+
else:
|
68 |
+
return {"message": "No face detected"}
|