textgraphs / demo.py
Paco Nathan
A new start
91eaff6
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Sample application to demo the `TextGraphs` library.
see copyright/license https://huggingface.co/spaces/DerwenAI/textgraphs/blob/main/README.md
"""
import asyncio
import sys # pylint: disable=W0611
import traceback
import time
import typing
from icecream import ic # pylint: disable=E0401
from pyinstrument import Profiler # pylint: disable=E0401
import matplotlib.pyplot as plt # pylint: disable=E0401
import pandas as pd # pylint: disable=E0401
import textgraphs
if __name__ == "__main__":
SRC_TEXT: str = """
Werner Herzog is a remarkable filmmaker and an intellectual originally from Germany, the son of Dietrich Herzog.
After the war, Werner fled to America to become famous.
"""
## set up
## NB: profiler raises handler exceptions when `concur = False`
debug: bool = False # True
concur: bool = True # False
profile: bool = True # False
if profile:
profiler: Profiler = Profiler()
profiler.start()
try:
start_time: float = time.time()
tg: textgraphs.TextGraphs = textgraphs.TextGraphs(
factory = textgraphs.PipelineFactory(
spacy_model = textgraphs.SPACY_MODEL,
ner = None, #textgraphs.NERSpanMarker(),
kg = textgraphs.KGWikiMedia(
spotlight_api = textgraphs.DBPEDIA_SPOTLIGHT_API,
dbpedia_search_api = textgraphs.DBPEDIA_SEARCH_API,
dbpedia_sparql_api = textgraphs.DBPEDIA_SPARQL_API,
wikidata_api = textgraphs.WIKIDATA_API,
),
infer_rels = [
textgraphs.InferRel_OpenNRE(
model = textgraphs.OPENNRE_MODEL,
max_skip = textgraphs.MAX_SKIP,
min_prob = textgraphs.OPENNRE_MIN_PROB,
),
textgraphs.InferRel_Rebel(
lang = "en_XX",
mrebel_model = textgraphs.MREBEL_MODEL,
),
],
),
)
duration: float = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: set up")
## NLP parse
start_time = time.time()
pipe: textgraphs.Pipeline = tg.create_pipeline(
SRC_TEXT.strip(),
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: parse text")
## collect graph elements from the parse
start_time = time.time()
tg.collect_graph_elements(
pipe,
debug = debug,
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: collect elements")
## perform entity linking
start_time = time.time()
tg.perform_entity_linking(
pipe,
debug = debug,
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: entity linking")
## perform concurrent relation extraction
start_time = time.time()
if concur:
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
inferred_edges: list = loop.run_until_complete(
tg.infer_relations_async(
pipe,
debug = debug,
)
)
else:
inferred_edges = tg.infer_relations(
pipe,
debug = debug,
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: relation extraction")
n_list: list = list(tg.nodes.values())
df_rel: pd.DataFrame = pd.DataFrame.from_dict([
{
"src": n_list[edge.src_node].text,
"dst": n_list[edge.dst_node].text,
"rel": pipe.kg.normalize_prefix(edge.rel),
"weight": edge.prob,
}
for edge in inferred_edges
])
ic(df_rel)
## construct the _lemma graph_
start_time = time.time()
tg.construct_lemma_graph(
debug = debug,
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: construct graph")
## rank the extracted phrases
start_time = time.time()
tg.calc_phrase_ranks(
pr_alpha = textgraphs.PAGERANK_ALPHA,
debug = debug,
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: rank phrases")
## show the extracted phrase results
ic(tg.get_phrases_as_df())
if debug: # pylint: disable=W0101
for key, node in tg.nodes.items():
print(key, node)
for key, edge in tg.edges.items():
print(key, edge)
except Exception as ex: # pylint: disable=W0718
ic(ex)
traceback.print_exc()
## transform graph data to a _graph of relations_
start_time = time.time()
gor: textgraphs.GraphOfRelations = textgraphs.GraphOfRelations(
tg,
)
gor.seeds(
debug = False, # True
)
gor.construct_gor(
debug = False, # True
)
_scores: typing.Dict[ tuple, float ] = gor.get_affinity_scores(
debug = False, # True
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: graph of relations")
gor.render_gor_plt(_scores)
plt.show()
#sys.exit(0)
######################################################################
## stack profiler report
if profile:
profiler.stop()
profiler.print()
## output lemma graph as JSON
with open("lemma.json", "w", encoding = "utf-8") as fp:
fp.write(tg.dump_lemma_graph())