Pilkada_DKI_2017 / main.py
Deploy-app's picture
Update main.py
10a2c43 verified
# Mengimpor pustaka yang diperlukan
import pandas as pd
import numpy as np
import sklearn.manifold as manifold
import matplotlib.pyplot as plt
import seaborn as sns
import pickle
import nltk
import tensorflow as tf
import re
# Mengunduh tokenizer dan stopwords
nltk.download('punkt')
nltk.download('stopwords')
# Mengimpor komponen dari NLTK
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
# Mengimpor komponen dari scikit-learn dan transformers
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score, confusion_matrix, roc_curve, auc
from sklearn.manifold import TSNE
from transformers import BertTokenizer, TFBertForSequenceClassification
df = pd.read_csv("dataset_tweet_sentiment_pilkada_DKI_2017.csv")
df.rename(columns={
'Sentiment': 'sentiment',
'Pasangan Calon': 'calon',
'Text Tweet': 'text'
}, inplace=True)
df.dropna(inplace=True)
#preprocessing
def clean_text(text):
text = re.sub(r"https?://\S+|www\.\S+", "", text) #hapus url
text = re.sub(r"@\S+", "", text) #hapus mention
text = re.sub(r"#\S+", "", text) #hapus hastag
text = re.sub(r"\d+", "", text) #hapus nomor
text = re.sub(r"[^\w\s]", "", text) #hapus tanda baca
text = re.sub(r"(.)\1{2,}", r"\1", text) #hapus double karakter
text = text.strip() #hapus spasi di depan dan di belakang
text = text.lower() #ubah menjadi huruf kecil
return text
stopword_pilkada = pd.read_csv("stopword_tweet_pilkada_DKI_2017.csv", header=None)
stopword_pilkada.columns = ['stopword']
stop_words = set(stopwords.words('indonesian'))
additional_sw = set(stopword_pilkada.stopword.values)
stop_words = stop_words.union(additional_sw)
def remove_stopwords(text):
word_tokens = word_tokenize(text)
filtered_sentence = [w for w in word_tokens if not w in stop_words]
return " ".join(filtered_sentence)
def preprocess_text(text):
text = clean_text(text)
text = remove_stopwords(text)
return(text)
text_to_process = "sangat gak bagus pak ahok"
processed_text = preprocess_text(text_to_process)
print(processed_text)
df_train, df_test = train_test_split(df, test_size=0.3, random_state=42)
df_val, df_test = train_test_split(df_test, test_size=0.5, random_state=42)
print("Train Data Size: ", len(df_train)) #70%
print("Validation Data Size: ", len(df_val)) #15%
print("Test Data Size: ", len(df_test)) #15%
PRETRAINED_MODEL = "indobenchmark/indobert-base-p2"
tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL)
vocab = tokenizer.get_vocab()
#mengecek distrubusi data untuk mengetahui panjang maksimal untuk token
token_lens = []
for txt in df["text"]:
tokens = tokenizer.encode(txt)
token_lens.append(len(tokens))
MAX_LEN = 60
df_train['sentiment'] = df_train['sentiment'].map({'positive': 1, 'negative': 0})
df_val['sentiment'] = df_val['sentiment'].map({'positive': 1, 'negative': 0})
def encode_sentence(sent):
return tokenizer.encode_plus(
sent,
add_special_tokens =True,
padding = 'max_length',
truncation = 'longest_first',
max_length = MAX_LEN,
return_attention_mask =True,
return_token_type_ids=True
)
def map_example_to_dict(input_ids, attention_masks, token_type_ids, label):
return{
"input_ids": input_ids,
"attention_mask": attention_masks,
"token_type_ids": token_type_ids,
}, label
def encode_dataset(ds, limit=-1):
input_ids_list = []
attention_mask_list = []
token_type_ids_list = []
label_list = []
for index, row in ds.iterrows():
if limit > 0 and index >= limit:
break
input_ids, attention_mask, token_type_ids =encode_sentence(row["text"])["input_ids"],\
encode_sentence(row["text"])["attention_mask"],\
encode_sentence(row["text"])["token_type_ids"]
label = row["sentiment"]
input_ids_list.append(input_ids)
attention_mask_list.append(attention_mask)
token_type_ids_list.append(token_type_ids)
label_list.append(label)
return tf.data.Dataset.from_tensor_slices((
input_ids_list,
attention_mask_list,
token_type_ids_list,
label_list
)).map(map_example_to_dict)
EPOCH = 1
BATCH_SIZE = 42
LEARNING_RATE = 1e-5
df_train_shuffled = df_train.sample(frac=1, random_state=42)
train_data = encode_dataset(df_train_shuffled).batch(BATCH_SIZE)
val_data = encode_dataset(df_val).batch(BATCH_SIZE)
test_data = encode_dataset(df_test).batch(BATCH_SIZE)
model = TFBertForSequenceClassification.from_pretrained(PRETRAINED_MODEL, num_labels=2)
model.summary()
optimizer = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')
model.compile(optimizer, loss=loss, metrics=[metric])
history = model.fit(
train_data,
epochs=EPOCH,
batch_size=BATCH_SIZE,
validation_data=val_data
)
# Convert string labels to numeric format for the test dataset
df_test['sentiment'] = df_test['sentiment'].map({'positive': 1, 'negative': 0})
# Create the test_data with the updated DataFrame
test_data = encode_dataset(df_test).batch(BATCH_SIZE)
# Evaluate the model
model.evaluate(test_data)
y_pred = model.predict(test_data)
y_actual = np.concatenate([y for x, y in test_data], axis=0)
labels = ["negative", "positive"]
def predict(text):
input_ids, attention_mask, token_type_ids = encode_sentence(text)["input_ids"],\
encode_sentence(text)["attention_mask"],\
encode_sentence(text)["token_type_ids"]
input_ids = tf.expand_dims(input_ids, 0)
attention_mask = tf.expand_dims(attention_mask, 0)
token_type_ids = tf.expand_dims(token_type_ids, 0)
outputs = model([input_ids, attention_mask, token_type_ids])
return labels[np.argmax(tf.nn.softmax(outputs[0], axis=1).numpy()[0])]