File size: 19,029 Bytes
f978ccd babcb18 b49c7c6 babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 580d952 babcb18 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 f978ccd 580d952 babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd babcb18 f978ccd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import streamlit as st
import os
import pandas as pd
import collections
from nltk.tokenize import word_tokenize
from nltk import download
from ast import literal_eval
from translate_app import tr
if st.session_state.Cloud == 0:
# import nltk
import contextlib
import re
from nltk.corpus import stopwords
import warnings
warnings.filterwarnings('ignore')
# from PIL import Image
# import time
# import random
title = "Exploration et Preprocessing"
sidebar_name = "Exploration et Preprocessing"
dataPath = st.session_state.DataPath
# Indiquer si l'on veut enlever les stop words. C'est un processus long
stopwords_to_do = True
# Indiquer si l'on veut lemmatiser les phrases, un fois les stop words enlevés. C'est un processus long (approximativement 8 minutes)
lemmatize_to_do = True
# Indiquer si l'on veut calculer le score Bleu pour tout le corpus. C'est un processus très long long (approximativement 10 minutes pour les 10 dictionnaires)
bleu_score_to_do = True
# Première ligne à charger
first_line = 0
# Nombre maximum de lignes à charger
max_lines = 140000
if ((first_line+max_lines)>137860):
max_lines = max(137860-first_line ,0)
# Nombre maximum de ligne à afficher pour les DataFrame
max_lines_to_display = 50
download('punkt')
if st.session_state.Cloud == 0:
download('averaged_perceptron_tagger')
with contextlib.redirect_stdout(open(os.devnull, "w")):
download('stopwords')
@st.cache_data
def load_data(path):
input_file = os.path.join(path)
with open(input_file, "r", encoding="utf-8") as f:
data = f.read()
# On convertit les majuscules en minulcule
data = data.lower()
data = data.split('\n')
return data[first_line:min(len(data),first_line+max_lines)]
@st.cache_data
def load_preprocessed_data(path,data_type):
input_file = os.path.join(path)
if data_type == 1:
return pd.read_csv(input_file, encoding="utf-8", index_col=0)
else:
with open(input_file, "r", encoding="utf-8") as f:
data = f.read()
data = data.split('\n')
if data_type==0:
data=data[:-1]
elif data_type == 2:
data=[eval(i) for i in data[:-1]]
elif data_type ==3:
data2 = []
for d in data[:-1]:
data2.append(literal_eval(d))
data=data2
return data
@st.cache_data
def load_all_preprocessed_data(lang):
txt =load_preprocessed_data(dataPath+'/preprocess_txt_'+lang,0)
txt_split = load_preprocessed_data(dataPath+'/preprocess_txt_split_'+lang,3)
txt_lem = load_preprocessed_data(dataPath+'/preprocess_txt_lem_'+lang,0)
txt_wo_stopword = load_preprocessed_data(dataPath+'/preprocess_txt_wo_stopword_'+lang,0)
df_count_word = pd.concat([load_preprocessed_data(dataPath+'/preprocess_df_count_word1_'+lang,1), load_preprocessed_data(dataPath+'/preprocess_df_count_word2_'+lang,1)])
return txt, txt_split, txt_lem, txt_wo_stopword, df_count_word
#Chargement des textes complet dans les 2 langues
full_txt_en = load_data(dataPath+'/small_vocab_en')
full_txt_fr = load_data(dataPath+'/small_vocab_fr')
# Chargement du résultat du préprocessing, si st.session_state.reCalcule == False
if not st.session_state.reCalcule:
full_txt_en, full_txt_split_en, full_txt_lem_en, full_txt_wo_stopword_en, full_df_count_word_en = load_all_preprocessed_data('en')
full_txt_fr, full_txt_split_fr, full_txt_lem_fr, full_txt_wo_stopword_fr, full_df_count_word_fr = load_all_preprocessed_data('fr')
else:
def remove_stopwords(text, lang):
stop_words = set(stopwords.words(lang))
# stop_words will contain set all english stopwords
filtered_sentence = []
for word in text.split():
if word not in stop_words:
filtered_sentence.append(word)
return " ".join(filtered_sentence)
def clean_undesirable_from_text(sentence, lang):
# Removing URLs
sentence = re.sub(r"https?://\S+|www\.\S+", "", sentence )
# Removing Punctuations (we keep the . character)
REPLACEMENTS = [("..", "."),
(",", ""),
(";", ""),
(":", ""),
("?", ""),
('"', ""),
("-", " "),
("it's", "it is"),
("isn't","is not"),
("'", " ")
]
for old, new in REPLACEMENTS:
sentence = sentence.replace(old, new)
# Removing Digits
sentence= re.sub(r'[0-9]','',sentence)
# Removing Additional Spaces
sentence = re.sub(' +', ' ', sentence)
return sentence
def clean_untranslated_sentence(data1, data2):
i=0
while i<len(data1):
if data1[i]==data2[i]:
data1.pop(i)
data2.pop(i)
else: i+=1
return data1,data2
import spacy
nlp_en = spacy.load('en_core_web_sm')
nlp_fr = spacy.load('fr_core_news_sm')
def lemmatize(sentence,lang):
# Create a Doc object
if lang=='en':
nlp=nlp_en
elif lang=='fr':
nlp=nlp_fr
else: return
doc = nlp(sentence)
# Create list of tokens from given string
tokens = []
for token in doc:
tokens.append(token)
lemmatized_sentence = " ".join([token.lemma_ for token in doc])
return lemmatized_sentence
def preprocess_txt (data, lang):
word_count = collections.Counter()
word_lem_count = collections.Counter()
word_wosw_count = collections.Counter()
corpus = []
data_split = []
sentence_length = []
data_split_wo_stopwords = []
data_length_wo_stopwords = []
data_lem = []
data_lem_length = []
txt_en_one_string= ". ".join([s for s in data])
txt_en_one_string = txt_en_one_string.replace('..', '.')
txt_en_one_string = " "+clean_undesirable_from_text(txt_en_one_string, 'lang')
data = txt_en_one_string.split('.')
if data[-1]=="":
data.pop(-1)
for i in range(len(data)): # On enleve les ' ' qui commencent et finissent les phrases
if data[i][0] == ' ':
data[i]=data[i][1:]
if data[i][-1] == ' ':
data[i]=data[i][:-1]
nb_phrases = len(data)
# Création d'un tableau de mots (sentence_split)
for i,sentence in enumerate(data):
sentence_split = word_tokenize(sentence)
word_count.update(sentence_split)
data_split.append(sentence_split)
sentence_length.append(len(sentence_split))
# La lemmatisation et le nettoyage des stopword va se faire en batch pour des raisons de vitesse
# (au lieu de le faire phrase par phrase)
# Ces 2 processus nécéssitent de connaitre la langue du corpus
if lang == 'en': l='english'
elif lang=='fr': l='french'
else: l="unknown"
if l!="unknown":
# Lemmatisation en 12 lots (On ne peut lemmatiser + de 1 M de caractères à la fois)
data_lemmatized=""
if lemmatize_to_do:
n_batch = 12
batch_size = round((nb_phrases/ n_batch)+0.5)
for i in range(n_batch):
to_lem = ".".join([s for s in data[i*batch_size:(i+1)*batch_size]])
data_lemmatized = data_lemmatized+"."+lemmatize(to_lem,lang).lower()
data_lem_for_sw = data_lemmatized[1:]
data_lemmatized = data_lem_for_sw.split('.')
for i in range(nb_phrases):
data_lem.append(data_lemmatized[i].split())
data_lem_length.append(len(data_lemmatized[i].split()))
word_lem_count.update(data_lem[-1])
# Elimination des StopWords en un lot
# On élimine les Stopwords des phrases lémmatisés, si cette phase a eu lieu
# (wosw signifie "WithOut Stop Words")
if stopwords_to_do:
if lemmatize_to_do:
data_wosw = remove_stopwords(data_lem_for_sw,l)
else:
data_wosw = remove_stopwords(txt_en_one_string,l)
data_wosw = data_wosw.split('.')
for i in range(nb_phrases):
data_split_wo_stopwords.append(data_wosw[i].split())
data_length_wo_stopwords.append(len(data_wosw[i].split()))
word_wosw_count.update(data_split_wo_stopwords[-1])
corpus = list(word_count.keys())
# Création d'un DataFrame txt_n_unique_val :
# colonnes = mots
# lignes = phases
# valeur de la cellule = nombre d'occurence du mot dans la phrase
## BOW
from sklearn.feature_extraction.text import CountVectorizer
count_vectorizer = CountVectorizer(analyzer="word", ngram_range=(1, 1), token_pattern=r"[^' ']+" )
# Calcul du nombre d'apparition de chaque mot dans la phrases
countvectors = count_vectorizer.fit_transform(data)
corpus = count_vectorizer.get_feature_names_out()
txt_n_unique_val= pd.DataFrame(columns=corpus,index=range(nb_phrases), data=countvectors.todense()).astype(float)
return data, corpus, data_split, data_lemmatized, data_wosw, txt_n_unique_val, sentence_length, data_length_wo_stopwords, data_lem_length
def count_world(data):
word_count = collections.Counter()
for sentence in data:
word_count.update(word_tokenize(sentence))
corpus = list(word_count.keys())
nb_mots = sum(word_count.values())
nb_mots_uniques = len(corpus)
return corpus, nb_mots, nb_mots_uniques
def display_preprocess_results(lang, data, data_split, data_lem, data_wosw, txt_n_unique_val):
global max_lines, first_line, last_line, lemmatize_to_do, stopwords_to_do
corpus = []
nb_phrases = len(data)
corpus, nb_mots, nb_mots_uniques = count_world(data)
mots_lem, _ , nb_mots_lem = count_world(data_lem)
mots_wo_sw, _ , nb_mots_wo_stopword = count_world(data_wosw)
# Identifiez les colonnes contenant uniquement des zéros et les supprimer
columns_with_only_zeros = txt_n_unique_val.columns[txt_n_unique_val.eq(0).all()]
txt_n_unique_val = txt_n_unique_val.drop(columns=columns_with_only_zeros)
# Affichage du nombre de mot en fonction du pré-processing réalisé
tab1, tab2, tab3, tab4 = st.tabs([tr("Résumé"), tr("Tokenisation"),tr("Lemmatisation"), tr("Sans Stopword")])
with tab1:
st.subheader(tr("Résumé du pré-processing"))
st.write("**"+tr("Nombre de phrases")+" : "+str(nb_phrases)+"**")
st.write("**"+tr("Nombre de mots")+" : "+str(nb_mots)+"**")
st.write("**"+tr("Nombre de mots uniques")+" : "+str(nb_mots_uniques)+"**")
st.write("")
st.write("\n**"+tr("Nombre d'apparitions de chaque mot dans chaque phrase (:red[Bag Of Words]):")+"**")
st.dataframe(txt_n_unique_val.head(max_lines_to_display), width=800)
with tab2:
st.subheader(tr("Tokenisation"))
st.write(tr('Texte "splited":'))
st.dataframe(pd.DataFrame(data=data_split, index=range(first_line,last_line)).head(max_lines_to_display).fillna(''), width=800)
st.write("**"+tr("Nombre de mots uniques")+" : "+str(nb_mots_uniques)+"**")
st.write("")
st.write("\n**"+tr("Mots uniques")+":**")
st.markdown(corpus[:500])
st.write("\n**"+tr("Nombre d'apparitions de chaque mot dans chaque phrase (:red[Bag Of Words]):")+"**")
st.dataframe(txt_n_unique_val.head(max_lines_to_display), width=800)
with tab3:
st.subheader(tr("Lemmatisation"))
if lemmatize_to_do:
st.dataframe(pd.DataFrame(data=data_lem,columns=[tr('Texte lemmatisé')],index=range(first_line,last_line)).head(max_lines_to_display), width=800)
# Si langue anglaise, affichage du taggage des mots
# if lang == 'en':
# for i in range(min(5,len(data))):
# s = str(nltk.pos_tag(data_split[i]))
# st.markdown("**Texte avec Tags "+str(i)+"** : "+s)
st.write("**"+tr("Nombre de mots uniques lemmatisés")+" : "+str(nb_mots_lem)+"**")
st.write("")
st.write("\n**"+tr("Mots uniques lemmatisés:")+"**")
st.markdown(mots_lem[:500])
with tab4:
st.subheader(tr("Sans Stopword"))
if stopwords_to_do:
st.dataframe(pd.DataFrame(data=data_wosw,columns=['Texte sans stopwords'],index=range(first_line,last_line)).head(max_lines_to_display), width=800)
st.write("**"+tr("Nombre de mots uniques sans stop words")+": "+str(nb_mots_wo_stopword)+"**")
st.write("")
st.write("\n**"+tr("Mots uniques sans stop words")+":**")
st.markdown(mots_wo_sw[:500])
def run():
global max_lines, first_line, last_line, lemmatize_to_do, stopwords_to_do
global full_txt_en, full_txt_split_en, full_txt_lem_en, full_txt_wo_stopword_en, full_df_count_word_en
global full_txt_fr, full_txt_split_fr, full_txt_lem_fr, full_txt_wo_stopword_fr, full_df_count_word_fr
st.write("")
st.title(tr(title))
st.write("## **"+tr("Explications")+" :**\n")
st.markdown(tr(
"""
Le traitement du langage naturel permet à l'ordinateur de comprendre et de traiter les langues humaines.
Lors de notre projet, nous avons étudié le dataset small_vocab, proposés par Suzan Li, Chief Data Scientist chez Campaign Research à Toronto.
Celui-ci représente un corpus de phrases simples en anglais, et sa traduction (approximative) en français.
:red[**Small_vocab**] contient 137 860 phrases en anglais et français.
""")
, unsafe_allow_html=True)
st.markdown(tr(
"""
Afin de découvrir ce corpus et de préparer la traduction, nous allons effectuer un certain nombre de tâches de pré-traitement (preprocessing).
Ces taches sont, par exemple:
""")
, unsafe_allow_html=True)
st.markdown(
"* "+tr("le :red[**nettoyage**] du texte (enlever les majuscules et la ponctuation)")+"\n"+ \
"* "+tr("la :red[**tokenisation**] (découpage du texte en mots)")+"\n"+ \
"* "+tr("la :red[**lemmatisation**] (traitement lexical qui permet de donner une forme unique à toutes les \"variations\" d'un même mot)")+"\n"+ \
"* "+tr("l'élimination des :red[**mots \"transparents\"**] (sans utilité pour la compréhension, tels que les articles).")+" \n"+ \
tr("Ce prétraintement se conclut avec la contruction d'un :red[**Bag Of Worlds**], c'est à dire une matrice qui compte le nombre d'apparition de chaque mots (colonne) dans chaque phrase (ligne)")
, unsafe_allow_html=True)
#
st.write("## **"+tr("Paramètres")+" :**\n")
Langue = st.radio(tr('Langue:'),('Anglais','Français'), horizontal=True)
first_line = st.slider(tr('No de la premiere ligne à analyser:'),0,137859)
max_lines = st.select_slider(tr('Nombre de lignes à analyser:'),
options=[1,5,10,15,100, 500, 1000,'Max'])
if max_lines=='Max':
max_lines=137860
if ((first_line+max_lines)>137860):
max_lines = max(137860-first_line,0)
last_line = first_line+max_lines
if (Langue=='Anglais'):
st.dataframe(pd.DataFrame(data=full_txt_en,columns=['Texte']).loc[first_line:last_line-1].head(max_lines_to_display), width=800)
else:
st.dataframe(pd.DataFrame(data=full_txt_fr,columns=['Texte']).loc[first_line:last_line-1].head(max_lines_to_display), width=800)
st.write("")
# Chargement des textes sélectionnés dans les 2 langues (max lignes = max_lines)
txt_en = full_txt_en[first_line:last_line]
txt_fr = full_txt_fr[first_line:last_line]
# Elimination des phrases non traduites
# txt_en, txt_fr = clean_untranslated_sentence(txt_en, txt_fr)
if not st.session_state.reCalcule:
txt_split_en = full_txt_split_en[first_line:last_line]
txt_lem_en = full_txt_lem_en[first_line:last_line]
txt_wo_stopword_en = full_txt_wo_stopword_en[first_line:last_line]
df_count_word_en = full_df_count_word_en.loc[first_line:last_line-1]
txt_split_fr = full_txt_split_fr[first_line:last_line]
txt_lem_fr = full_txt_lem_fr[first_line:last_line]
txt_wo_stopword_fr = full_txt_wo_stopword_fr[first_line:last_line]
df_count_word_fr = full_df_count_word_fr.loc[first_line:last_line-1]
# Lancement du préprocessing du texte qui va spliter nettoyer les phrases et les spliter en mots
# et calculer nombre d'occurences des mots dans chaque phrase
if (Langue == 'Anglais'):
st.write("## **"+tr("Préprocessing de small_vocab_en")+" :**\n")
if max_lines>10000:
with st.status(":sunglasses:", expanded=True):
if st.session_state.reCalcule:
txt_en, corpus_en, txt_split_en, txt_lem_en, txt_wo_stopword_en, df_count_word_en,sent_len_en, sent_wo_sw_len_en, sent_lem_len_en = preprocess_txt (txt_en,'en')
display_preprocess_results('en',txt_en, txt_split_en, txt_lem_en, txt_wo_stopword_en, df_count_word_en)
else:
if st.session_state.reCalcule:
txt_en, corpus_en, txt_split_en, txt_lem_en, txt_wo_stopword_en, df_count_word_en,sent_len_en, sent_wo_sw_len_en, sent_lem_len_en = preprocess_txt (txt_en,'en')
display_preprocess_results('en',txt_en, txt_split_en, txt_lem_en, txt_wo_stopword_en, df_count_word_en)
else:
st.write("## **"+tr("Préprocessing de small_vocab_fr")+" :**\n")
if max_lines>10000:
with st.status(":sunglasses:", expanded=True):
if st.session_state.reCalcule:
txt_fr, corpus_fr, txt_split_fr, txt_lem_fr, txt_wo_stopword_fr, df_count_word_fr,sent_len_fr, sent_wo_sw_len_fr, sent_lem_len_fr = preprocess_txt (txt_fr,'fr')
display_preprocess_results('fr', txt_fr, txt_split_fr, txt_lem_fr, txt_wo_stopword_fr, df_count_word_fr)
else:
if st.session_state.reCalcule:
txt_fr, corpus_fr, txt_split_fr, txt_lem_fr, txt_wo_stopword_fr, df_count_word_fr,sent_len_fr, sent_wo_sw_len_fr, sent_lem_len_fr = preprocess_txt (txt_fr,'fr')
display_preprocess_results('fr', txt_fr, txt_split_fr, txt_lem_fr, txt_wo_stopword_fr, df_count_word_fr)
|