DawnC commited on
Commit
b14ab04
·
1 Parent(s): c22f0e1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -691
app.py CHANGED
@@ -35,575 +35,10 @@ from urllib.parse import quote
35
  from ultralytics import YOLO
36
  import asyncio
37
  import traceback
38
- import spaces
39
- import torch.cuda.amp
40
-
41
-
42
- # history_manager = UserHistoryManager()
43
-
44
- # dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
45
- # "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
46
- # "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
47
- # "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
48
- # "Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
49
- # "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
50
- # "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
51
- # "Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
52
- # "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
53
- # "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
54
- # "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
55
- # "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
56
- # "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
57
- # "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
58
- # "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
59
- # "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
60
- # "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
61
- # "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
62
- # "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
63
- # "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
64
- # "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
65
- # "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
66
- # "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
67
- # "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
68
- # "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
69
- # "Wire-Haired_Fox_Terrier"]
70
-
71
-
72
- # @spaces.GPU(duration=30) # Request smaller GPU time chunk
73
- # def get_device():
74
- # """
75
- # Initialize device configuration with automatic CPU fallback.
76
- # Attempts GPU first, falls back to CPU if necessary.
77
- # """
78
- # print("Initializing device configuration...")
79
-
80
- # try:
81
- # # Attempt GPU initialization with optimizations
82
- # if torch.cuda.is_available():
83
- # device = torch.device('cuda')
84
- # torch.cuda.init()
85
- # torch.set_float32_matmul_precision('medium')
86
-
87
- # # Add CUDA optimizations
88
- # torch.backends.cudnn.benchmark = True
89
- # torch.backends.cudnn.deterministic = False
90
-
91
- # print(f"Successfully initialized CUDA device: {torch.cuda.get_device_name(device)}")
92
- # return device
93
-
94
- # except (spaces.zero.gradio.HTMLError, RuntimeError) as e:
95
- # print(f"GPU initialization error: {str(e)}")
96
-
97
- # # CPU fallback with optimizations
98
- # print("Using CPU mode")
99
- # torch.set_num_threads(4) # Optimize CPU performance
100
- # return torch.device('cpu')
101
-
102
- # device = get_device()
103
-
104
-
105
- # class MultiHeadAttention(nn.Module):
106
-
107
- # def __init__(self, in_dim, num_heads=8):
108
- # super().__init__()
109
- # self.num_heads = num_heads
110
- # self.head_dim = max(1, in_dim // num_heads)
111
- # self.scaled_dim = self.head_dim * num_heads
112
- # self.fc_in = nn.Linear(in_dim, self.scaled_dim)
113
- # self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
114
- # self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
115
- # self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
116
- # self.fc_out = nn.Linear(self.scaled_dim, in_dim)
117
-
118
- # def forward(self, x):
119
- # N = x.shape[0]
120
- # x = self.fc_in(x)
121
- # q = self.query(x).view(N, self.num_heads, self.head_dim)
122
- # k = self.key(x).view(N, self.num_heads, self.head_dim)
123
- # v = self.value(x).view(N, self.num_heads, self.head_dim)
124
-
125
- # energy = torch.einsum("nqd,nkd->nqk", [q, k])
126
- # attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
127
-
128
- # out = torch.einsum("nqk,nvd->nqd", [attention, v])
129
- # out = out.reshape(N, self.scaled_dim)
130
- # out = self.fc_out(out)
131
- # return out
132
-
133
- # class BaseModel(nn.Module):
134
- # def __init__(self, num_classes, device=None):
135
- # super().__init__()
136
- # if device is None:
137
- # device = get_device()
138
- # self.device = device
139
- # print(f"Initializing model on device: {device}")
140
-
141
- # self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1).to(self.device)
142
- # self.feature_dim = self.backbone.classifier[1].in_features
143
- # self.backbone.classifier = nn.Identity()
144
-
145
- # self.num_heads = max(1, min(8, self.feature_dim // 64))
146
- # self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads).to(self.device)
147
-
148
- # self.classifier = nn.Sequential(
149
- # nn.LayerNorm(self.feature_dim),
150
- # nn.Dropout(0.3),
151
- # nn.Linear(self.feature_dim, num_classes)
152
- # )
153
-
154
- # self.to(device)
155
-
156
- # def forward(self, x):
157
- # if x.device != self.device:
158
- # x = x.to(self.device)
159
- # features = self.backbone(x)
160
- # attended_features = self.attention(features)
161
- # logits = self.classifier(attended_features)
162
- # return logits, attended_features
163
-
164
- # def load_model(model_path, model_instance, device):
165
- # """
166
- # Enhanced model loading function with device handling.
167
- # Maintains original function signature for compatibility.
168
- # """
169
- # try:
170
- # print(f"Loading model to device: {device}")
171
-
172
- # # Load checkpoint with optimizations
173
- # checkpoint = torch.load(
174
- # model_path,
175
- # map_location=device,
176
- # weights_only=True
177
- # )
178
-
179
- # # Load model weights
180
- # model_instance.load_state_dict(checkpoint['base_model'], strict=False)
181
- # model_instance = model_instance.to(device)
182
- # model_instance.eval()
183
-
184
- # print("Model loading successful")
185
- # return model_instance
186
-
187
- # except RuntimeError as e:
188
- # if "CUDA out of memory" in str(e):
189
- # print("GPU memory exceeded, falling back to CPU")
190
- # device = torch.device('cpu')
191
- # model_instance = model_instance.cpu()
192
-
193
- # # Retry loading on CPU
194
- # checkpoint = torch.load(model_path, map_location='cpu')
195
- # model_instance.load_state_dict(checkpoint['base_model'], strict=False)
196
- # model_instance.eval()
197
- # return model_instance
198
-
199
- # print(f"Model loading error: {str(e)}")
200
- # raise
201
-
202
- # # Initialize model
203
- # num_classes = len(dog_breeds)
204
-
205
- # model = BaseModel(num_classes=num_classes, device=device)
206
-
207
- # # 使用優化後的載入函數
208
- # model = load_model("124_best_model_dog.pth", model, device)
209
- # model.eval()
210
-
211
- # # Image preprocessing function
212
- # def preprocess_image(image):
213
- # # If the image is numpy.ndarray turn into PIL.Image
214
- # if isinstance(image, np.ndarray):
215
- # image = Image.fromarray(image)
216
-
217
- # # Use torchvision.transforms to process images
218
- # transform = transforms.Compose([
219
- # transforms.Resize((224, 224)),
220
- # transforms.ToTensor(),
221
- # transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
222
- # ])
223
-
224
- # return transform(image).unsqueeze(0)
225
-
226
- # def initialize_yolo_model(device):
227
- # try:
228
- # model_yolo = YOLO('yolov8l.pt')
229
- # if torch.cuda.is_available():
230
- # model_yolo.to(device)
231
- # print(f"YOLO model initialized on {device}")
232
- # return model_yolo
233
- # except Exception as e:
234
- # print(f"Error initializing YOLO model: {str(e)}")
235
- # print("Attempting to initialize YOLO model on CPU")
236
- # return YOLO('yolov8l.pt')
237
-
238
- # model_yolo = initialize_yolo_model(device)
239
-
240
- # async def predict_single_dog(image):
241
- # """
242
- # Predicts the dog breed using only the classifier.
243
- # Args:
244
- # image: PIL Image or numpy array
245
- # Returns:
246
- # tuple: (top1_prob, topk_breeds, relative_probs)
247
- # """
248
- # image_tensor = preprocess_image(image).to(device)
249
-
250
- # with torch.no_grad():
251
- # # Get model outputs (只使用logits,不需要features)
252
- # logits = model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素
253
- # probs = F.softmax(logits, dim=1)
254
-
255
- # # Classifier prediction
256
- # top5_prob, top5_idx = torch.topk(probs, k=5)
257
- # breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
258
- # probabilities = [prob.item() for prob in top5_prob[0]]
259
-
260
- # # Calculate relative probabilities
261
- # sum_probs = sum(probabilities[:3]) # 只取前三個來計算相對概率
262
- # relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
263
-
264
- # # Debug output
265
- # print("\nClassifier Predictions:")
266
- # for breed, prob in zip(breeds[:5], probabilities[:5]):
267
- # print(f"{breed}: {prob:.4f}")
268
-
269
- # return probabilities[0], breeds[:3], relative_probs
270
-
271
-
272
- # async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
273
- # results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
274
- # dogs = []
275
- # boxes = []
276
- # for box in results.boxes:
277
- # if box.cls == 16: # COCO dataset class for dog is 16
278
- # xyxy = box.xyxy[0].tolist()
279
- # confidence = box.conf.item()
280
- # boxes.append((xyxy, confidence))
281
-
282
- # if not boxes:
283
- # dogs.append((image, 1.0, [0, 0, image.width, image.height]))
284
- # else:
285
- # nms_boxes = non_max_suppression(boxes, iou_threshold)
286
-
287
- # for box, confidence in nms_boxes:
288
- # x1, y1, x2, y2 = box
289
- # w, h = x2 - x1, y2 - y1
290
- # x1 = max(0, x1 - w * 0.05)
291
- # y1 = max(0, y1 - h * 0.05)
292
- # x2 = min(image.width, x2 + w * 0.05)
293
- # y2 = min(image.height, y2 + h * 0.05)
294
- # cropped_image = image.crop((x1, y1, x2, y2))
295
- # dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
296
-
297
- # return dogs
298
-
299
- # def non_max_suppression(boxes, iou_threshold):
300
- # keep = []
301
- # boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
302
- # while boxes:
303
- # current = boxes.pop(0)
304
- # keep.append(current)
305
- # boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
306
- # return keep
307
-
308
-
309
- # def calculate_iou(box1, box2):
310
- # x1 = max(box1[0], box2[0])
311
- # y1 = max(box1[1], box2[1])
312
- # x2 = min(box1[2], box2[2])
313
- # y2 = min(box1[3], box2[3])
314
-
315
- # intersection = max(0, x2 - x1) * max(0, y2 - y1)
316
- # area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
317
- # area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
318
-
319
- # iou = intersection / float(area1 + area2 - intersection)
320
- # return iou
321
-
322
-
323
-
324
- # def create_breed_comparison(breed1: str, breed2: str) -> dict:
325
- # breed1_info = get_dog_description(breed1)
326
- # breed2_info = get_dog_description(breed2)
327
-
328
- # # 標準化數值轉換
329
- # value_mapping = {
330
- # 'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
331
- # 'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
332
- # 'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
333
- # 'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
334
- # }
335
-
336
- # comparison_data = {
337
- # breed1: {},
338
- # breed2: {}
339
- # }
340
-
341
- # for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
342
- # comparison_data[breed] = {
343
- # 'Size': value_mapping['Size'].get(info['Size'], 2), # 預設 Medium
344
- # 'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2), # 預設 Moderate
345
- # 'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
346
- # 'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
347
- # 'Good_with_Children': info['Good with Children'] == 'Yes',
348
- # 'Original_Data': info
349
- # }
350
-
351
- # return comparison_data
352
-
353
-
354
- # async def predict(image):
355
- # """
356
- # Main prediction function that handles both single and multiple dog detection.
357
-
358
- # Args:
359
- # image: PIL Image or numpy array
360
-
361
- # Returns:
362
- # tuple: (html_output, annotated_image, initial_state)
363
- # """
364
- # if image is None:
365
- # return format_warning_html("Please upload an image to start."), None, None
366
-
367
- # try:
368
- # if isinstance(image, np.ndarray):
369
- # image = Image.fromarray(image)
370
-
371
- # # Detect dogs in the image
372
- # dogs = await detect_multiple_dogs(image)
373
- # color_scheme = get_color_scheme(len(dogs) == 1)
374
-
375
- # # Prepare for annotation
376
- # annotated_image = image.copy()
377
- # draw = ImageDraw.Draw(annotated_image)
378
-
379
- # try:
380
- # font = ImageFont.truetype("arial.ttf", 24)
381
- # except:
382
- # font = ImageFont.load_default()
383
-
384
- # dogs_info = ""
385
-
386
- # # Process each detected dog
387
- # for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
388
- # color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
389
-
390
- # # Draw box and label on image
391
- # draw.rectangle(box, outline=color, width=4)
392
- # label = f"Dog {i+1}"
393
- # label_bbox = draw.textbbox((0, 0), label, font=font)
394
- # label_width = label_bbox[2] - label_bbox[0]
395
- # label_height = label_bbox[3] - label_bbox[1]
396
-
397
- # # Draw label background and text
398
- # label_x = box[0] + 5
399
- # label_y = box[1] + 5
400
- # draw.rectangle(
401
- # [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
402
- # fill='white',
403
- # outline=color,
404
- # width=2
405
- # )
406
- # draw.text((label_x, label_y), label, fill=color, font=font)
407
-
408
- # # Predict breed
409
- # top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
410
- # combined_confidence = detection_confidence * top1_prob
411
-
412
- # # Format results based on confidence with error handling
413
- # try:
414
- # if combined_confidence < 0.2:
415
- # dogs_info += format_error_message(color, i+1)
416
- # elif top1_prob >= 0.45:
417
- # breed = topk_breeds[0]
418
- # description = get_dog_description(breed)
419
- # # Handle missing breed description
420
- # if description is None:
421
- # # 如果沒有描述,創建一個基本描述
422
- # description = {
423
- # "Name": breed,
424
- # "Size": "Unknown",
425
- # "Exercise Needs": "Unknown",
426
- # "Grooming Needs": "Unknown",
427
- # "Care Level": "Unknown",
428
- # "Good with Children": "Unknown",
429
- # "Description": f"Identified as {breed.replace('_', ' ')}"
430
- # }
431
- # dogs_info += format_single_dog_result(breed, description, color)
432
- # else:
433
- # # 修改format_multiple_breeds_result的調用,包含錯誤處理
434
- # dogs_info += format_multiple_breeds_result(
435
- # topk_breeds,
436
- # relative_probs,
437
- # color,
438
- # i+1,
439
- # lambda breed: get_dog_description(breed) or {
440
- # "Name": breed,
441
- # "Size": "Unknown",
442
- # "Exercise Needs": "Unknown",
443
- # "Grooming Needs": "Unknown",
444
- # "Care Level": "Unknown",
445
- # "Good with Children": "Unknown",
446
- # "Description": f"Identified as {breed.replace('_', ' ')}"
447
- # }
448
- # )
449
- # except Exception as e:
450
- # print(f"Error formatting results for dog {i+1}: {str(e)}")
451
- # dogs_info += format_error_message(color, i+1)
452
-
453
- # # Wrap final HTML output
454
- # html_output = format_multi_dog_container(dogs_info)
455
-
456
- # # Prepare initial state
457
- # initial_state = {
458
- # "dogs_info": dogs_info,
459
- # "image": annotated_image,
460
- # "is_multi_dog": len(dogs) > 1,
461
- # "html_output": html_output
462
- # }
463
-
464
- # return html_output, annotated_image, initial_state
465
-
466
- # except Exception as e:
467
- # error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
468
- # print(error_msg)
469
- # return format_warning_html(error_msg), None, None
470
-
471
-
472
- # def show_details_html(choice, previous_output, initial_state):
473
- # """
474
- # Generate detailed HTML view for a selected breed.
475
-
476
- # Args:
477
- # choice: str, Selected breed option
478
- # previous_output: str, Previous HTML output
479
- # initial_state: dict, Current state information
480
-
481
- # Returns:
482
- # tuple: (html_output, gradio_update, updated_state)
483
- # """
484
- # if not choice:
485
- # return previous_output, gr.update(visible=True), initial_state
486
-
487
- # try:
488
- # breed = choice.split("More about ")[-1]
489
- # description = get_dog_description(breed)
490
- # html_output = format_breed_details_html(description, breed)
491
-
492
- # # Update state
493
- # initial_state["current_description"] = html_output
494
- # initial_state["original_buttons"] = initial_state.get("buttons", [])
495
-
496
- # return html_output, gr.update(visible=True), initial_state
497
-
498
- # except Exception as e:
499
- # error_msg = f"An error occurred while showing details: {e}"
500
- # print(error_msg)
501
- # return format_warning_html(error_msg), gr.update(visible=True), initial_state
502
-
503
- # def main():
504
- # print("\n=== System Information ===")
505
- # print(f"PyTorch Version: {torch.__version__}")
506
- # print(f"CUDA Available: {torch.cuda.is_available()}")
507
- # if torch.cuda.is_available():
508
- # print(f"CUDA Version: {torch.version.cuda}")
509
- # print(f"Current Device: {torch.cuda.current_device()}")
510
-
511
- # # 清理 GPU 記憶體(如果可用)
512
- # if torch.cuda.is_available():
513
- # torch.cuda.empty_cache()
514
-
515
- # device = get_device()
516
-
517
- # with gr.Blocks(css=get_css_styles()) as iface:
518
- # # Header HTML
519
-
520
- # gr.HTML("""
521
- # <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
522
- # <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
523
- # 🐾 PawMatch AI
524
- # </h1>
525
- # <h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
526
- # Your Smart Dog Breed Guide
527
- # </h2>
528
- # <div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
529
- # <p style='color: #718096; font-size: 0.9em;'>
530
- # Powered by AI • Breed Recognition • Smart Matching • Companion Guide
531
- # </p>
532
- # </header>
533
- # """)
534
-
535
- # # 先創建歷史組件實例(但不創建標籤頁)
536
- # history_component = create_history_component()
537
-
538
- # with gr.Tabs():
539
- # # 1. 品種檢測標籤頁
540
- # example_images = [
541
- # 'Border_Collie.jpg',
542
- # 'Golden_Retriever.jpeg',
543
- # 'Saint_Bernard.jpeg',
544
- # 'Samoyed.jpg',
545
- # 'French_Bulldog.jpeg'
546
- # ]
547
- # detection_components = create_detection_tab(predict, example_images)
548
-
549
- # # 2. 品種比較標籤頁
550
- # comparison_components = create_comparison_tab(
551
- # dog_breeds=dog_breeds,
552
- # get_dog_description=get_dog_description,
553
- # breed_health_info=breed_health_info,
554
- # breed_noise_info=breed_noise_info
555
- # )
556
-
557
- # # 3. 品種推薦標籤頁
558
- # recommendation_components = create_recommendation_tab(
559
- # UserPreferences=UserPreferences,
560
- # get_breed_recommendations=get_breed_recommendations,
561
- # format_recommendation_html=format_recommendation_html,
562
- # history_component=history_component
563
- # )
564
-
565
-
566
- # # 4. 最後創建歷史記錄標籤頁
567
- # create_history_tab(history_component)
568
-
569
- # # Footer
570
- # gr.HTML('''
571
- # <div style="
572
- # display: flex;
573
- # align-items: center;
574
- # justify-content: center;
575
- # gap: 20px;
576
- # padding: 20px 0;
577
- # ">
578
- # <p style="
579
- # font-family: 'Arial', sans-serif;
580
- # font-size: 14px;
581
- # font-weight: 500;
582
- # letter-spacing: 2px;
583
- # background: linear-gradient(90deg, #555, #007ACC);
584
- # -webkit-background-clip: text;
585
- # -webkit-text-fill-color: transparent;
586
- # margin: 0;
587
- # text-transform: uppercase;
588
- # display: inline-block;
589
- # ">EXPLORE THE CODE →</p>
590
- # <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
591
- # <img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
592
- # </a>
593
- # </div>
594
- # ''')
595
-
596
- # return iface
597
-
598
- # if __name__ == "__main__":
599
- # print(f"CUDA available: {torch.cuda.is_available()}")
600
- # if torch.cuda.is_available():
601
- # print(f"Current device: {torch.cuda.current_device()}")
602
- # print(f"Device name: {torch.cuda.get_device_name()}")
603
- # iface = main()
604
- # iface.launch()
605
 
606
 
 
 
607
  history_manager = UserHistoryManager()
608
 
609
  dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
@@ -634,52 +69,6 @@ dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staff
634
  "Wire-Haired_Fox_Terrier"]
635
 
636
 
637
- def get_device():
638
- """
639
- Initialize device configuration with proper Zero GPU handling.
640
- """
641
- # Default to CPU - safer initial state
642
- return torch.device('cpu')
643
-
644
- # Modify the model initialization to be lazy
645
- class LazyLoadModel:
646
- def __init__(self):
647
- self._model = None
648
- self._device = None
649
-
650
- @spaces.GPU(duration=30)
651
- def get_model(self):
652
- if self._model is None:
653
- try:
654
- self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
655
- self._model = BaseModel(num_classes=len(dog_breeds), device=self._device)
656
- checkpoint = torch.load("124_best_model_dog.pth", map_location=self._device)
657
- self._model.load_state_dict(checkpoint['base_model'], strict=False)
658
- self._model.eval()
659
- except Exception as e:
660
- print(f"Error initializing model: {e}")
661
- self._device = torch.device('cpu')
662
- self._model = BaseModel(num_classes=len(dog_breeds), device=self._device)
663
- checkpoint = torch.load("124_best_model_dog.pth", map_location='cpu')
664
- self._model.load_state_dict(checkpoint['base_model'], strict=False)
665
- self._model.eval()
666
- return self._model
667
-
668
- class LazyLoadYOLO:
669
- def __init__(self):
670
- self._model = None
671
-
672
- @spaces.GPU(duration=30)
673
- def get_model(self):
674
- if self._model is None:
675
- try:
676
- self._model = YOLO('yolov8l.pt')
677
- except Exception as e:
678
- print(f"Error initializing YOLO model: {e}")
679
- raise
680
- return self._model
681
-
682
-
683
  class MultiHeadAttention(nn.Module):
684
 
685
  def __init__(self, in_dim, num_heads=8):
@@ -709,19 +98,15 @@ class MultiHeadAttention(nn.Module):
709
  return out
710
 
711
  class BaseModel(nn.Module):
712
- def __init__(self, num_classes, device=None):
713
  super().__init__()
714
- if device is None:
715
- device = get_device()
716
  self.device = device
717
- print(f"Initializing model on device: {device}")
718
-
719
- self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1).to(self.device)
720
  self.feature_dim = self.backbone.classifier[1].in_features
721
  self.backbone.classifier = nn.Identity()
722
 
723
  self.num_heads = max(1, min(8, self.feature_dim // 64))
724
- self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads).to(self.device)
725
 
726
  self.classifier = nn.Sequential(
727
  nn.LayerNorm(self.feature_dim),
@@ -732,51 +117,27 @@ class BaseModel(nn.Module):
732
  self.to(device)
733
 
734
  def forward(self, x):
735
- if x.device != self.device:
736
- x = x.to(self.device)
737
  features = self.backbone(x)
738
  attended_features = self.attention(features)
739
  logits = self.classifier(attended_features)
740
  return logits, attended_features
741
 
742
- def load_model(model_path, model_instance, device):
743
- """
744
- Enhanced model loading function with device handling.
745
- Maintains original function signature for compatibility.
746
- """
747
- try:
748
- print(f"Loading model to device: {device}")
749
-
750
- # Load checkpoint with optimizations
751
- checkpoint = torch.load(
752
- model_path,
753
- map_location=device,
754
- weights_only=True
755
- )
756
-
757
- # Load model weights
758
- model_instance.load_state_dict(checkpoint['base_model'], strict=False)
759
- model_instance = model_instance.to(device)
760
- model_instance.eval()
761
-
762
- print("Model loading successful")
763
- return model_instance
764
-
765
- except RuntimeError as e:
766
- if "CUDA out of memory" in str(e):
767
- print("GPU memory exceeded, falling back to CPU")
768
- device = torch.device('cpu')
769
- model_instance = model_instance.cpu()
770
-
771
- # Retry loading on CPU
772
- checkpoint = torch.load(model_path, map_location='cpu')
773
- model_instance.load_state_dict(checkpoint['base_model'], strict=False)
774
- model_instance.eval()
775
- return model_instance
776
-
777
- print(f"Model loading error: {str(e)}")
778
- raise
779
-
780
  # Image preprocessing function
781
  def preprocess_image(image):
782
  # If the image is numpy.ndarray turn into PIL.Image
@@ -792,32 +153,39 @@ def preprocess_image(image):
792
 
793
  return transform(image).unsqueeze(0)
794
 
795
- @spaces.GPU(duration=30)
796
- async def predict_single_dog(image, lazy_model):
797
  """
798
- Predicts the dog breed using only the classifier with proper GPU handling.
 
 
 
 
799
  """
800
- model = lazy_model.get_model()
801
- device = model.device
802
  image_tensor = preprocess_image(image).to(device)
803
-
804
  with torch.no_grad():
805
- logits = model(image_tensor)[0]
 
806
  probs = F.softmax(logits, dim=1)
807
 
 
808
  top5_prob, top5_idx = torch.topk(probs, k=5)
809
  breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
810
  probabilities = [prob.item() for prob in top5_prob[0]]
811
 
812
- sum_probs = sum(probabilities[:3])
 
813
  relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
814
 
 
 
 
 
 
815
  return probabilities[0], breeds[:3], relative_probs
816
 
817
 
818
- @spaces.GPU(duration=30)
819
  async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
820
- model_yolo = lazy_yolo.get_model()
821
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
822
  dogs = []
823
  boxes = []
@@ -1049,13 +417,9 @@ def show_details_html(choice, previous_output, initial_state):
1049
  return format_warning_html(error_msg), gr.update(visible=True), initial_state
1050
 
1051
  def main():
1052
- # 初始化延遲加載模型
1053
- lazy_model = LazyLoadModel()
1054
- lazy_yolo = LazyLoadYOLO()
1055
-
1056
- # Gradio 介面構建
1057
  with gr.Blocks(css=get_css_styles()) as iface:
1058
- # 標題部分
 
1059
  gr.HTML("""
1060
  <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
1061
  <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
@@ -1071,24 +435,21 @@ def main():
1071
  </header>
1072
  """)
1073
 
1074
- # 創建歷史組件
1075
  history_component = create_history_component()
1076
 
1077
  with gr.Tabs():
1078
- # 品種檢測標籤頁
1079
  example_images = [
1080
- 'Border_Collie.jpg',
1081
- 'Golden_Retriever.jpeg',
1082
- 'Saint_Bernard.jpeg',
1083
- 'Samoyed.jpg',
1084
- 'French_Bulldog.jpeg'
1085
  ]
1086
- detection_components = create_detection_tab(
1087
- lambda img: predict(img, lazy_model, lazy_yolo),
1088
- example_images
1089
- )
1090
 
1091
- # 品種比較標籤頁
1092
  comparison_components = create_comparison_tab(
1093
  dog_breeds=dog_breeds,
1094
  get_dog_description=get_dog_description,
@@ -1096,7 +457,7 @@ def main():
1096
  breed_noise_info=breed_noise_info
1097
  )
1098
 
1099
- # 品種推薦標籤頁
1100
  recommendation_components = create_recommendation_tab(
1101
  UserPreferences=UserPreferences,
1102
  get_breed_recommendations=get_breed_recommendations,
@@ -1104,7 +465,8 @@ def main():
1104
  history_component=history_component
1105
  )
1106
 
1107
- # 歷史記錄標籤頁
 
1108
  create_history_tab(history_component)
1109
 
1110
  # Footer
@@ -1138,4 +500,4 @@ def main():
1138
 
1139
  if __name__ == "__main__":
1140
  iface = main()
1141
- iface.launch()
 
35
  from ultralytics import YOLO
36
  import asyncio
37
  import traceback
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
 
40
+ model_yolo = YOLO('yolov8l.pt')
41
+
42
  history_manager = UserHistoryManager()
43
 
44
  dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
 
69
  "Wire-Haired_Fox_Terrier"]
70
 
71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  class MultiHeadAttention(nn.Module):
73
 
74
  def __init__(self, in_dim, num_heads=8):
 
98
  return out
99
 
100
  class BaseModel(nn.Module):
101
+ def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
102
  super().__init__()
 
 
103
  self.device = device
104
+ self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
 
 
105
  self.feature_dim = self.backbone.classifier[1].in_features
106
  self.backbone.classifier = nn.Identity()
107
 
108
  self.num_heads = max(1, min(8, self.feature_dim // 64))
109
+ self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
110
 
111
  self.classifier = nn.Sequential(
112
  nn.LayerNorm(self.feature_dim),
 
117
  self.to(device)
118
 
119
  def forward(self, x):
120
+ x = x.to(self.device)
 
121
  features = self.backbone(x)
122
  attended_features = self.attention(features)
123
  logits = self.classifier(attended_features)
124
  return logits, attended_features
125
 
126
+ # Initialize model
127
+ num_classes = len(dog_breeds)
128
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
129
+
130
+ # Initialize base model
131
+ model = BaseModel(num_classes=num_classes, device=device).to(device)
132
+
133
+ # Load model path
134
+ model_path = '/content/drive/Othercomputers/我的 MacBook Pro/Learning/Cats_Dogs_Detector/(124_TEST)_models/[124_82.30]_best_model_dog.pth'
135
+ checkpoint = torch.load(model_path, map_location=device)
136
+
137
+ # Load model state
138
+ model.load_state_dict(checkpoint['base_model'], strict=False)
139
+ model.eval()
140
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
  # Image preprocessing function
142
  def preprocess_image(image):
143
  # If the image is numpy.ndarray turn into PIL.Image
 
153
 
154
  return transform(image).unsqueeze(0)
155
 
156
+ async def predict_single_dog(image):
 
157
  """
158
+ Predicts the dog breed using only the classifier.
159
+ Args:
160
+ image: PIL Image or numpy array
161
+ Returns:
162
+ tuple: (top1_prob, topk_breeds, relative_probs)
163
  """
 
 
164
  image_tensor = preprocess_image(image).to(device)
165
+
166
  with torch.no_grad():
167
+ # Get model outputs (只使用logits,不需要features)
168
+ logits = model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素
169
  probs = F.softmax(logits, dim=1)
170
 
171
+ # Classifier prediction
172
  top5_prob, top5_idx = torch.topk(probs, k=5)
173
  breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
174
  probabilities = [prob.item() for prob in top5_prob[0]]
175
 
176
+ # Calculate relative probabilities
177
+ sum_probs = sum(probabilities[:3]) # 只取前三個來計算相對概率
178
  relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
179
 
180
+ # Debug output
181
+ print("\nClassifier Predictions:")
182
+ for breed, prob in zip(breeds[:5], probabilities[:5]):
183
+ print(f"{breed}: {prob:.4f}")
184
+
185
  return probabilities[0], breeds[:3], relative_probs
186
 
187
 
 
188
  async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
 
189
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
190
  dogs = []
191
  boxes = []
 
417
  return format_warning_html(error_msg), gr.update(visible=True), initial_state
418
 
419
  def main():
 
 
 
 
 
420
  with gr.Blocks(css=get_css_styles()) as iface:
421
+ # Header HTML
422
+
423
  gr.HTML("""
424
  <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
425
  <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
 
435
  </header>
436
  """)
437
 
438
+ # 先創建歷史組件實例(但不創建標籤頁)
439
  history_component = create_history_component()
440
 
441
  with gr.Tabs():
442
+ # 1. 品種檢測標籤頁
443
  example_images = [
444
+ '/content/drive/Othercomputers/我的 MacBook Pro/Learning/Cats_Dogs_Detector/test_images/Border_Collie.jpg',
445
+ '/content/drive/Othercomputers/我的 MacBook Pro/Learning/Cats_Dogs_Detector/test_images/Golden_Retriever.jpeg',
446
+ '/content/drive/Othercomputers/我的 MacBook Pro/Learning/Cats_Dogs_Detector/test_images/Saint_Bernard.jpeg',
447
+ '/content/drive/Othercomputers/我的 MacBook Pro/Learning/Cats_Dogs_Detector/test_images/Samoyed.jpg',
448
+ '/content/drive/Othercomputers/我的 MacBook Pro/Learning/Cats_Dogs_Detector/test_images/French_Bulldog.jpeg'
449
  ]
450
+ detection_components = create_detection_tab(predict, example_images)
 
 
 
451
 
452
+ # 2. 品種比較標籤頁
453
  comparison_components = create_comparison_tab(
454
  dog_breeds=dog_breeds,
455
  get_dog_description=get_dog_description,
 
457
  breed_noise_info=breed_noise_info
458
  )
459
 
460
+ # 3. 品種推薦標籤頁
461
  recommendation_components = create_recommendation_tab(
462
  UserPreferences=UserPreferences,
463
  get_breed_recommendations=get_breed_recommendations,
 
465
  history_component=history_component
466
  )
467
 
468
+
469
+ # 4. 最後創建歷史記錄標籤頁
470
  create_history_tab(history_component)
471
 
472
  # Footer
 
500
 
501
  if __name__ == "__main__":
502
  iface = main()
503
+ iface.launch(share=True, debug=True)