DawnC commited on
Commit
a49aed3
·
1 Parent(s): e45f03a

Update scoring_calculation_system.py

Browse files
Files changed (1) hide show
  1. scoring_calculation_system.py +58 -48
scoring_calculation_system.py CHANGED
@@ -23,6 +23,9 @@ class UserPreferences:
23
  climate: str # "cold", "moderate", "hot"
24
  health_sensitivity: str = "medium"
25
  barking_acceptance: str = None
 
 
 
26
 
27
  def __post_init__(self):
28
  """在初始化後運行,用於設置派生值"""
@@ -426,19 +429,19 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
426
  # 重新設計基礎分數矩陣,降低普遍分數以增加區別度
427
  base_scores = {
428
  "Small": {
429
- "apartment": 0.85, # 降低滿分機會
430
- "house_small": 0.80, # 小型犬不應在大空間得到太高分數
431
- "house_large": 0.75 # 避免小型犬總是得到最高分
432
  },
433
  "Medium": {
434
- "apartment": 0.45, # 維持對公寓環境的限制
435
- "house_small": 0.75, # 適中的分數
436
- "house_large": 0.85 # 給予合理的獎勵
437
  },
438
  "Large": {
439
- "apartment": 0.15, # 加重對大型犬在公寓的限制
440
- "house_small": 0.65, # 中等適合度
441
- "house_large": 0.90 # 最適合的環境
442
  },
443
  "Giant": {
444
  "apartment": 0.10, # 更嚴格的限制
@@ -572,7 +575,7 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
572
  if exercise_time >= breed_level['ideal']:
573
  if exercise_time > breed_level['max']:
574
  # 運動時間過長,適度降分
575
- time_score = 0.15 - (0.05 * (exercise_time - breed_level['max']) / 30)
576
  else:
577
  time_score = 0.15
578
  elif exercise_time >= breed_level['min']:
@@ -582,7 +585,7 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
582
  else:
583
  # 運動時間不足,根據差距程度扣分
584
  time_ratio = max(0, exercise_time / breed_level['min'])
585
- time_score = -0.15 * (1 - time_ratio)
586
 
587
  # 運動類型匹配度評估
588
  type_score = 0.0
@@ -737,19 +740,19 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
737
  # 基礎分數矩陣 - 大幅擴大不同經驗等級的分數差異
738
  base_scores = {
739
  "High": {
740
- "beginner": 0.10, # 降低起始分,高難度品種對新手幾乎不推薦
741
- "intermediate": 0.60, # 中級玩家仍需謹慎
742
  "advanced": 1.0 # 資深者能完全勝任
743
  },
744
  "Moderate": {
745
- "beginner": 0.35, # 適中難度對新手仍具挑戰
746
- "intermediate": 0.80, # 中級玩家較適合
747
- "advanced": 1.0 # 資深者完全勝任
748
  },
749
  "Low": {
750
- "beginner": 0.90, # 新手友善品種
751
- "intermediate": 0.95, # 中級玩家幾乎完全勝任
752
- "advanced": 1.0 # 資深者完全勝任
753
  }
754
  }
755
 
@@ -1229,12 +1232,20 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
1229
  }
1230
 
1231
  # 動態調整權重
 
 
 
 
 
1232
  if user_prefs.living_space == 'apartment':
1233
- weights['space'] *= 1.5
1234
- weights['noise'] *= 1.3
1235
-
1236
- if abs(user_prefs.exercise_time - 120) > 60: # 運動時間極端情況
1237
- weights['exercise'] *= 1.4
 
 
 
1238
 
1239
  # 正規化權重
1240
  total_weight = sum(weights.values())
@@ -1252,32 +1263,31 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
1252
 
1253
  def amplify_score_extreme(score: float) -> float:
1254
  """
1255
- 改進的分數轉換函數
1256
- 提供更大的分數範圍和更明顯的差異
1257
 
1258
  轉換邏輯:
1259
- - 極差匹配 (0.0-0.3) -> 60-68%
1260
- - 較差匹配 (0.3-0.5) -> 68-75%
1261
- - 中等匹配 (0.5-0.7) -> 75-85%
1262
- - 良好匹配 (0.7-0.85) -> 85-92%
1263
- - 優秀匹配 (0.85-1.0) -> 92-95%
1264
  """
1265
- if score < 0.3:
1266
- # 極差匹配:快速線性增長
1267
- return 0.60 + (score / 0.3) * 0.08
1268
- elif score < 0.5:
1269
  # 較差匹配:緩慢增長
1270
- position = (score - 0.3) / 0.2
1271
- return 0.68 + position * 0.07
1272
- elif score < 0.7:
1273
- # 中等匹配:穩定線性增長
1274
- position = (score - 0.5) / 0.2
1275
- return 0.75 + position * 0.10
1276
- elif score < 0.85:
1277
- # 良好匹配:加速增長
1278
- position = (score - 0.7) / 0.15
1279
- return 0.85 + position * 0.07
1280
  else:
1281
- # 優秀匹配:最後衝刺
1282
- position = (score - 0.85) / 0.15
1283
- return 0.92 + position * 0.03
 
23
  climate: str # "cold", "moderate", "hot"
24
  health_sensitivity: str = "medium"
25
  barking_acceptance: str = None
26
+
27
+ training_commitment: str = "medium" # "low", "medium", "high" - 訓練投入程度
28
+ living_environment: str = "ground_floor" # "ground_floor", "with_elevator", "walk_up" - 居住環境細節
29
 
30
  def __post_init__(self):
31
  """在初始化後運行,用於設置派生值"""
 
429
  # 重新設計基礎分數矩陣,降低普遍分數以增加區別度
430
  base_scores = {
431
  "Small": {
432
+ "apartment": 0.90, # 降低滿分機會
433
+ "house_small": 0.85, # 小型犬不應在大空間得到太高分數
434
+ "house_large": 0.80 # 避免小型犬總是得到最高分
435
  },
436
  "Medium": {
437
+ "apartment": 0.40, # 維持對公寓環境的限制
438
+ "house_small": 0.80, # 適中的分數
439
+ "house_large": 0.90 # 給予合理的獎勵
440
  },
441
  "Large": {
442
+ "apartment": 0.10, # 加重對大型犬在公寓的限制
443
+ "house_small": 0.60, # 中等適合度
444
+ "house_large": 0.95 # 最適合的環境
445
  },
446
  "Giant": {
447
  "apartment": 0.10, # 更嚴格的限制
 
575
  if exercise_time >= breed_level['ideal']:
576
  if exercise_time > breed_level['max']:
577
  # 運動時間過長,適度降分
578
+ time_score = 0.15 - (0.08 * (exercise_time - breed_level['max']) / 30)
579
  else:
580
  time_score = 0.15
581
  elif exercise_time >= breed_level['min']:
 
585
  else:
586
  # 運動時間不足,根據差距程度扣分
587
  time_ratio = max(0, exercise_time / breed_level['min'])
588
+ time_score = -0.20 * (1 - time_ratio)
589
 
590
  # 運動類型匹配度評估
591
  type_score = 0.0
 
740
  # 基礎分數矩陣 - 大幅擴大不同經驗等級的分數差異
741
  base_scores = {
742
  "High": {
743
+ "beginner": 0.15, # 降低起始分,高難度品種對新手幾乎不推薦
744
+ "intermediate": 0.65, # 中級玩家仍需謹慎
745
  "advanced": 1.0 # 資深者能完全勝任
746
  },
747
  "Moderate": {
748
+ "beginner": 0.40, # 適中難度對新手仍具挑戰
749
+ "intermediate": 0.85, # 中級玩家較適合
750
+ "advanced": 0.95 # 資深者完全勝任
751
  },
752
  "Low": {
753
+ "beginner": 0.85, # 新手友善品種
754
+ "intermediate": 0.90, # 中級玩家幾乎完全勝任
755
+ "advanced": 0.85 # 資深者完全勝任
756
  }
757
  }
758
 
 
1232
  }
1233
 
1234
  # 動態調整權重
1235
+ if user_prefs.has_children:
1236
+ if user_prefs.children_age == 'toddler':
1237
+ weights['noise'] *= 1.5 # 幼童對噪音更敏感
1238
+ weights['experience'] *= 1.3 # 需要更有經驗的飼主
1239
+
1240
  if user_prefs.living_space == 'apartment':
1241
+ weights['space'] *= 1.4 # 公寓空間限制更重要
1242
+ weights['noise'] *= 1.3 # 噪音問題更重要
1243
+
1244
+ # 運動時間極端情況
1245
+ if user_prefs.exercise_time < 30:
1246
+ weights['exercise'] *= 1.5 # 運動時間極少時加重權重
1247
+ elif user_prefs.exercise_time > 150:
1248
+ weights['exercise'] *= 1.3 # 運動時間充足時略微加重
1249
 
1250
  # 正規化權重
1251
  total_weight = sum(weights.values())
 
1263
 
1264
  def amplify_score_extreme(score: float) -> float:
1265
  """
1266
+ 改進的分數轉換函數,提供更大的分數區間和更明顯的差異
 
1267
 
1268
  轉換邏輯:
1269
+ - 極差匹配 (0.0-0.2) -> 50-60%
1270
+ - 較差匹配 (0.2-0.4) -> 60-70%
1271
+ - 中等匹配 (0.4-0.6) -> 70-82%
1272
+ - 良好匹配 (0.6-0.8) -> 82-90%
1273
+ - 優秀匹配 (0.8-1.0) -> 90-98%
1274
  """
1275
+ if score < 0.2:
1276
+ # 極差匹配:更低的起始分數
1277
+ return 0.50 + (score / 0.2) * 0.10
1278
+ elif score < 0.4:
1279
  # 較差匹配:緩慢增長
1280
+ position = (score - 0.2) / 0.2
1281
+ return 0.60 + position * 0.10
1282
+ elif score < 0.6:
1283
+ # 中等匹配:較大的分數增長
1284
+ position = (score - 0.4) / 0.2
1285
+ return 0.70 + position * 0.12
1286
+ elif score < 0.8:
1287
+ # 良好匹配:快速增長
1288
+ position = (score - 0.6) / 0.2
1289
+ return 0.82 + position * 0.08
1290
  else:
1291
+ # 優秀匹配:達到更高分數
1292
+ position = (score - 0.8) / 0.2
1293
+ return 0.90 + position * 0.08