DawnC commited on
Commit
11ab9ab
·
1 Parent(s): 0e5cc70

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -68
app.py CHANGED
@@ -503,9 +503,6 @@ import traceback
503
  # iface.launch()
504
 
505
 
506
- model_yolo = YOLO('yolov8l.pt')
507
-
508
- history_manager = UserHistoryManager()
509
 
510
  dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
511
  "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
@@ -537,6 +534,8 @@ dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staff
537
 
538
  device_mgr = DeviceManager()
539
 
 
 
540
  class MultiHeadAttention(nn.Module):
541
 
542
  def __init__(self, in_dim, num_heads=8):
@@ -597,15 +596,18 @@ num_classes = len(dog_breeds)
597
 
598
  # Initialize base model
599
  model = BaseModel(num_classes=num_classes)
600
-
601
  # Load model path
602
  model_path = '124_best_model_dog.pth'
603
- checkpoint = torch.load(model_path, map_location=device_mgr.get_optimal_device())
604
 
605
  # Load model state
606
  model.load_state_dict(checkpoint['base_model'], strict=False)
607
  model.eval()
608
 
 
 
 
609
  # Image preprocessing function
610
  def preprocess_image(image):
611
  # If the image is numpy.ndarray turn into PIL.Image
@@ -621,74 +623,59 @@ def preprocess_image(image):
621
 
622
  return transform(image).unsqueeze(0)
623
 
 
 
624
  async def predict_single_dog(image):
625
- """
626
- Predicts the dog breed using only the classifier.
627
- """
628
- try:
629
- image_tensor = preprocess_image(image).to(device_mgr.get_optimal_device())
 
 
 
630
 
631
- with torch.no_grad():
632
- outputs = model(image_tensor) # 同步調用
633
- logits = outputs[0] if isinstance(outputs, tuple) else outputs
634
- probs = F.softmax(logits, dim=1)
635
-
636
- top5_prob, top5_idx = torch.topk(probs, k=5)
637
- breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
638
- probabilities = [prob.item() for prob in top5_prob[0]]
639
-
640
- sum_probs = sum(probabilities[:3])
641
- relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
642
-
643
- print("\nClassifier Predictions:")
644
- for breed, prob in zip(breeds[:5], probabilities[:5]):
645
- print(f"{breed}: {prob:.4f}")
646
-
647
- return probabilities[0], breeds[:3], relative_probs
648
-
649
- except RuntimeError as e:
650
- if "out of memory" in str(e):
651
- logger.warning("GPU memory exceeded, falling back to CPU")
652
- device_mgr._current_device = torch.device('cpu')
653
- return await predict_single_dog(image)
654
- raise e
655
 
 
 
656
 
657
- async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
658
- try:
659
- results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
660
- dogs = []
661
- boxes = []
662
- for box in results.boxes:
663
- if box.cls == 16: # COCO dataset class for dog is 16
664
- xyxy = box.xyxy[0].tolist()
665
- confidence = box.conf.item()
666
- boxes.append((xyxy, confidence))
667
-
668
- if not boxes:
669
- dogs.append((image, 1.0, [0, 0, image.width, image.height]))
670
- else:
671
- nms_boxes = non_max_suppression(boxes, iou_threshold)
672
-
673
- for box, confidence in nms_boxes:
674
- x1, y1, x2, y2 = box
675
- w, h = x2 - x1, y2 - y1
676
- x1 = max(0, x1 - w * 0.05)
677
- y1 = max(0, y1 - h * 0.05)
678
- x2 = min(image.width, x2 + w * 0.05)
679
- y2 = min(image.height, y2 + h * 0.05)
680
- cropped_image = image.crop((x1, y1, x2, y2))
681
- dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
682
-
683
- return dogs
684
 
685
- except RuntimeError as e:
686
- if "out of memory" in str(e):
687
- logger.warning("GPU memory exceeded, falling back to CPU")
688
- device_mgr._current_device = torch.device('cpu')
689
- # 重新嘗試檢測
690
- return await detect_multiple_dogs(image, conf_threshold, iou_threshold)
691
- raise e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
692
 
693
 
694
  def non_max_suppression(boxes, iou_threshold):
 
503
  # iface.launch()
504
 
505
 
 
 
 
506
 
507
  dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
508
  "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
 
534
 
535
  device_mgr = DeviceManager()
536
 
537
+ history_manager = UserHistoryManager()
538
+
539
  class MultiHeadAttention(nn.Module):
540
 
541
  def __init__(self, in_dim, num_heads=8):
 
596
 
597
  # Initialize base model
598
  model = BaseModel(num_classes=num_classes)
599
+ model = device_mgr.to_device(model)
600
  # Load model path
601
  model_path = '124_best_model_dog.pth'
602
+ checkpoint = torch.load(model_path, map_location=device_mgr.get_device(), weights_only=True)
603
 
604
  # Load model state
605
  model.load_state_dict(checkpoint['base_model'], strict=False)
606
  model.eval()
607
 
608
+ model_yolo = YOLO('yolov8l.pt')
609
+ model_yolo = device_mgr.to_device(model_yolo)
610
+
611
  # Image preprocessing function
612
  def preprocess_image(image):
613
  # If the image is numpy.ndarray turn into PIL.Image
 
623
 
624
  return transform(image).unsqueeze(0)
625
 
626
+
627
+ @adaptive_gpu(duration=30)
628
  async def predict_single_dog(image):
629
+ """單獨的狗預測函數"""
630
+ image_tensor = preprocess_image(image)
631
+ image_tensor = device_mgr.to_device(image_tensor)
632
+
633
+ with torch.no_grad():
634
+ outputs = model(image_tensor)
635
+ logits = outputs[0] if isinstance(outputs, tuple) else outputs
636
+ probs = F.softmax(logits, dim=1)
637
 
638
+ top5_prob, top5_idx = torch.topk(probs, k=5)
639
+ breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
640
+ probabilities = [prob.item() for prob in top5_prob[0]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
641
 
642
+ sum_probs = sum(probabilities[:3])
643
+ relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
644
 
645
+ print("\nClassifier Predictions:")
646
+ for breed, prob in zip(breeds[:5], probabilities[:5]):
647
+ print(f"{breed}: {prob:.4f}")
648
+
649
+ return probabilities[0], breeds[:3], relative_probs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
650
 
651
+ @adaptive_gpu(duration=30)
652
+ async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
653
+ """複數狗預測函數"""
654
+ results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
655
+ dogs = []
656
+ boxes = []
657
+ for box in results.boxes:
658
+ if box.cls == 16: # COCO dataset class for dog is 16
659
+ xyxy = box.xyxy[0].tolist()
660
+ confidence = box.conf.item()
661
+ boxes.append((xyxy, confidence))
662
+
663
+ if not boxes:
664
+ dogs.append((image, 1.0, [0, 0, image.width, image.height]))
665
+ else:
666
+ nms_boxes = non_max_suppression(boxes, iou_threshold)
667
+
668
+ for box, confidence in nms_boxes:
669
+ x1, y1, x2, y2 = box
670
+ w, h = x2 - x1, y2 - y1
671
+ x1 = max(0, x1 - w * 0.05)
672
+ y1 = max(0, y1 - h * 0.05)
673
+ x2 = min(image.width, x2 + w * 0.05)
674
+ y2 = min(image.height, y2 + h * 0.05)
675
+ cropped_image = image.crop((x1, y1, x2, y2))
676
+ dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
677
+
678
+ return dogs
679
 
680
 
681
  def non_max_suppression(boxes, iou_threshold):