PawMatchAI / app.py
DawnC's picture
Update app.py
c729302
raw
history blame
40.1 kB
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
import time
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from dog_database import get_dog_description
from scoring_calculation_system import UserPreferences
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
from history_manager import UserHistoryManager
from search_history import create_history_tab, create_history_component
from styles import get_css_styles
from breed_detection import create_detection_tab
from breed_comparison import create_comparison_tab
from breed_recommendation import create_recommendation_tab
from html_templates import (
format_description_html,
format_single_dog_result,
format_multiple_breeds_result,
format_error_message,
format_warning_html,
format_multi_dog_container,
format_breed_details_html,
get_color_scheme,
get_akc_breeds_link
)
from urllib.parse import quote
from ultralytics import YOLO
import traceback
import spaces
# model_yolo = YOLO('yolov8l.pt')
# history_manager = UserHistoryManager()
# dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
# "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
# "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
# "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
# "Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
# "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
# "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
# "Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
# "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
# "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
# "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
# "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
# "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
# "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
# "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
# "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
# "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
# "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
# "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
# "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
# "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
# "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
# "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
# "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
# "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
# "Wire-Haired_Fox_Terrier"]
# class MultiHeadAttention(nn.Module):
# def __init__(self, in_dim, num_heads=8):
# super().__init__()
# self.num_heads = num_heads
# self.head_dim = max(1, in_dim // num_heads)
# self.scaled_dim = self.head_dim * num_heads
# self.fc_in = nn.Linear(in_dim, self.scaled_dim)
# self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
# self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
# self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
# self.fc_out = nn.Linear(self.scaled_dim, in_dim)
# def forward(self, x):
# N = x.shape[0]
# x = self.fc_in(x)
# q = self.query(x).view(N, self.num_heads, self.head_dim)
# k = self.key(x).view(N, self.num_heads, self.head_dim)
# v = self.value(x).view(N, self.num_heads, self.head_dim)
# energy = torch.einsum("nqd,nkd->nqk", [q, k])
# attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
# out = torch.einsum("nqk,nvd->nqd", [attention, v])
# out = out.reshape(N, self.scaled_dim)
# out = self.fc_out(out)
# return out
# class BaseModel(nn.Module):
# def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
# super().__init__()
# self.device = device
# self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
# self.feature_dim = self.backbone.classifier[1].in_features
# self.backbone.classifier = nn.Identity()
# self.num_heads = max(1, min(8, self.feature_dim // 64))
# self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
# self.classifier = nn.Sequential(
# nn.LayerNorm(self.feature_dim),
# nn.Dropout(0.3),
# nn.Linear(self.feature_dim, num_classes)
# )
# self.to(device)
# def forward(self, x):
# x = x.to(self.device)
# features = self.backbone(x)
# attended_features = self.attention(features)
# logits = self.classifier(attended_features)
# return logits, attended_features
# # Initialize model
# num_classes = len(dog_breeds)
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# # Initialize base model
# model = BaseModel(num_classes=num_classes, device=device).to(device)
# # Load model path
# model_path = '124_best_model_dog.pth'
# checkpoint = torch.load(model_path, map_location=device)
# # Load model state
# model.load_state_dict(checkpoint['base_model'], strict=False)
# model.eval()
# # Image preprocessing function
# def preprocess_image(image):
# # If the image is numpy.ndarray turn into PIL.Image
# if isinstance(image, np.ndarray):
# image = Image.fromarray(image)
# # Use torchvision.transforms to process images
# transform = transforms.Compose([
# transforms.Resize((224, 224)),
# transforms.ToTensor(),
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# ])
# return transform(image).unsqueeze(0)
# async def predict_single_dog(image):
# """
# Predicts the dog breed using only the classifier.
# Args:
# image: PIL Image or numpy array
# Returns:
# tuple: (top1_prob, topk_breeds, relative_probs)
# """
# image_tensor = preprocess_image(image).to(device)
# with torch.no_grad():
# # Get model outputs (只使用logits,不需要features)
# logits = model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素
# probs = F.softmax(logits, dim=1)
# # Classifier prediction
# top5_prob, top5_idx = torch.topk(probs, k=5)
# breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
# probabilities = [prob.item() for prob in top5_prob[0]]
# # Calculate relative probabilities
# sum_probs = sum(probabilities[:3]) # 只取前三個來計算相對概率
# relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
# # Debug output
# print("\nClassifier Predictions:")
# for breed, prob in zip(breeds[:5], probabilities[:5]):
# print(f"{breed}: {prob:.4f}")
# return probabilities[0], breeds[:3], relative_probs
# async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
# dogs = []
# boxes = []
# for box in results.boxes:
# if box.cls == 16: # COCO dataset class for dog is 16
# xyxy = box.xyxy[0].tolist()
# confidence = box.conf.item()
# boxes.append((xyxy, confidence))
# if not boxes:
# dogs.append((image, 1.0, [0, 0, image.width, image.height]))
# else:
# nms_boxes = non_max_suppression(boxes, iou_threshold)
# for box, confidence in nms_boxes:
# x1, y1, x2, y2 = box
# w, h = x2 - x1, y2 - y1
# x1 = max(0, x1 - w * 0.05)
# y1 = max(0, y1 - h * 0.05)
# x2 = min(image.width, x2 + w * 0.05)
# y2 = min(image.height, y2 + h * 0.05)
# cropped_image = image.crop((x1, y1, x2, y2))
# dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
# return dogs
# def non_max_suppression(boxes, iou_threshold):
# keep = []
# boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
# while boxes:
# current = boxes.pop(0)
# keep.append(current)
# boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
# return keep
# def calculate_iou(box1, box2):
# x1 = max(box1[0], box2[0])
# y1 = max(box1[1], box2[1])
# x2 = min(box1[2], box2[2])
# y2 = min(box1[3], box2[3])
# intersection = max(0, x2 - x1) * max(0, y2 - y1)
# area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
# area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
# iou = intersection / float(area1 + area2 - intersection)
# return iou
# def create_breed_comparison(breed1: str, breed2: str) -> dict:
# breed1_info = get_dog_description(breed1)
# breed2_info = get_dog_description(breed2)
# # 標準化數值轉換
# value_mapping = {
# 'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
# 'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
# 'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
# 'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
# }
# comparison_data = {
# breed1: {},
# breed2: {}
# }
# for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
# comparison_data[breed] = {
# 'Size': value_mapping['Size'].get(info['Size'], 2), # 預設 Medium
# 'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2), # 預設 Moderate
# 'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
# 'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
# 'Good_with_Children': info['Good with Children'] == 'Yes',
# 'Original_Data': info
# }
# return comparison_data
# async def predict(image):
# """
# Main prediction function that handles both single and multiple dog detection.
# Args:
# image: PIL Image or numpy array
# Returns:
# tuple: (html_output, annotated_image, initial_state)
# """
# if image is None:
# return format_warning_html("Please upload an image to start."), None, None
# try:
# if isinstance(image, np.ndarray):
# image = Image.fromarray(image)
# # Detect dogs in the image
# dogs = await detect_multiple_dogs(image)
# color_scheme = get_color_scheme(len(dogs) == 1)
# # Prepare for annotation
# annotated_image = image.copy()
# draw = ImageDraw.Draw(annotated_image)
# try:
# font = ImageFont.truetype("arial.ttf", 24)
# except:
# font = ImageFont.load_default()
# dogs_info = ""
# # Process each detected dog
# for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
# color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
# # Draw box and label on image
# draw.rectangle(box, outline=color, width=4)
# label = f"Dog {i+1}"
# label_bbox = draw.textbbox((0, 0), label, font=font)
# label_width = label_bbox[2] - label_bbox[0]
# label_height = label_bbox[3] - label_bbox[1]
# # Draw label background and text
# label_x = box[0] + 5
# label_y = box[1] + 5
# draw.rectangle(
# [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
# fill='white',
# outline=color,
# width=2
# )
# draw.text((label_x, label_y), label, fill=color, font=font)
# # Predict breed
# top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
# combined_confidence = detection_confidence * top1_prob
# # Format results based on confidence with error handling
# try:
# if combined_confidence < 0.2:
# dogs_info += format_error_message(color, i+1)
# elif top1_prob >= 0.45:
# breed = topk_breeds[0]
# description = get_dog_description(breed)
# # Handle missing breed description
# if description is None:
# # 如果沒有描述,創建一個基本描述
# description = {
# "Name": breed,
# "Size": "Unknown",
# "Exercise Needs": "Unknown",
# "Grooming Needs": "Unknown",
# "Care Level": "Unknown",
# "Good with Children": "Unknown",
# "Description": f"Identified as {breed.replace('_', ' ')}"
# }
# dogs_info += format_single_dog_result(breed, description, color)
# else:
# # 修改format_multiple_breeds_result的調用,包含錯誤處理
# dogs_info += format_multiple_breeds_result(
# topk_breeds,
# relative_probs,
# color,
# i+1,
# lambda breed: get_dog_description(breed) or {
# "Name": breed,
# "Size": "Unknown",
# "Exercise Needs": "Unknown",
# "Grooming Needs": "Unknown",
# "Care Level": "Unknown",
# "Good with Children": "Unknown",
# "Description": f"Identified as {breed.replace('_', ' ')}"
# }
# )
# except Exception as e:
# print(f"Error formatting results for dog {i+1}: {str(e)}")
# dogs_info += format_error_message(color, i+1)
# # Wrap final HTML output
# html_output = format_multi_dog_container(dogs_info)
# # Prepare initial state
# initial_state = {
# "dogs_info": dogs_info,
# "image": annotated_image,
# "is_multi_dog": len(dogs) > 1,
# "html_output": html_output
# }
# return html_output, annotated_image, initial_state
# except Exception as e:
# error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
# print(error_msg)
# return format_warning_html(error_msg), None, None
# def show_details_html(choice, previous_output, initial_state):
# """
# Generate detailed HTML view for a selected breed.
# Args:
# choice: str, Selected breed option
# previous_output: str, Previous HTML output
# initial_state: dict, Current state information
# Returns:
# tuple: (html_output, gradio_update, updated_state)
# """
# if not choice:
# return previous_output, gr.update(visible=True), initial_state
# try:
# breed = choice.split("More about ")[-1]
# description = get_dog_description(breed)
# html_output = format_breed_details_html(description, breed)
# # Update state
# initial_state["current_description"] = html_output
# initial_state["original_buttons"] = initial_state.get("buttons", [])
# return html_output, gr.update(visible=True), initial_state
# except Exception as e:
# error_msg = f"An error occurred while showing details: {e}"
# print(error_msg)
# return format_warning_html(error_msg), gr.update(visible=True), initial_state
# def main():
# with gr.Blocks(css=get_css_styles()) as iface:
# # Header HTML
# gr.HTML("""
# <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
# <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
# 🐾 PawMatch AI
# </h1>
# <h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
# Your Smart Dog Breed Guide
# </h2>
# <div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
# <p style='color: #718096; font-size: 0.9em;'>
# Powered by AI • Breed Recognition • Smart Matching • Companion Guide
# </p>
# </header>
# """)
# # 先創建歷史組件實例(但不創建標籤頁)
# history_component = create_history_component()
# with gr.Tabs():
# # 1. 品種檢測標籤頁
# example_images = [
# 'Border_Collie.jpg',
# 'Golden_Retriever.jpeg',
# 'Saint_Bernard.jpeg',
# 'Samoyed.jpg',
# 'French_Bulldog.jpeg'
# ]
# detection_components = create_detection_tab(predict, example_images)
# # 2. 品種比較標籤頁
# comparison_components = create_comparison_tab(
# dog_breeds=dog_breeds,
# get_dog_description=get_dog_description,
# breed_health_info=breed_health_info,
# breed_noise_info=breed_noise_info
# )
# # 3. 品種推薦標籤頁
# recommendation_components = create_recommendation_tab(
# UserPreferences=UserPreferences,
# get_breed_recommendations=get_breed_recommendations,
# format_recommendation_html=format_recommendation_html,
# history_component=history_component
# )
# # 4. 最後創建歷史記錄標籤頁
# create_history_tab(history_component)
# # Footer
# gr.HTML('''
# <div style="
# display: flex;
# align-items: center;
# justify-content: center;
# gap: 20px;
# padding: 20px 0;
# ">
# <p style="
# font-family: 'Arial', sans-serif;
# font-size: 14px;
# font-weight: 500;
# letter-spacing: 2px;
# background: linear-gradient(90deg, #555, #007ACC);
# -webkit-background-clip: text;
# -webkit-text-fill-color: transparent;
# margin: 0;
# text-transform: uppercase;
# display: inline-block;
# ">EXPLORE THE CODE →</p>
# <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
# <img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
# </a>
# </div>
# ''')
# return iface
# if __name__ == "__main__":
# iface = main()
# iface.launch()
history_manager = UserHistoryManager()
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
"Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
"Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
"Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
"Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
"Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
"Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
"Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
"Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
"Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
"Wire-Haired_Fox_Terrier"]
class MultiHeadAttention(nn.Module):
def __init__(self, in_dim, num_heads=8):
super().__init__()
self.num_heads = num_heads
self.head_dim = max(1, in_dim // num_heads)
self.scaled_dim = self.head_dim * num_heads
self.fc_in = nn.Linear(in_dim, self.scaled_dim)
self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
self.fc_out = nn.Linear(self.scaled_dim, in_dim)
def forward(self, x):
N = x.shape[0]
x = self.fc_in(x)
q = self.query(x).view(N, self.num_heads, self.head_dim)
k = self.key(x).view(N, self.num_heads, self.head_dim)
v = self.value(x).view(N, self.num_heads, self.head_dim)
energy = torch.einsum("nqd,nkd->nqk", [q, k])
attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
out = torch.einsum("nqk,nvd->nqd", [attention, v])
out = out.reshape(N, self.scaled_dim)
out = self.fc_out(out)
return out
class BaseModel(nn.Module):
def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
super().__init__()
self.device = device
self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
self.feature_dim = self.backbone.classifier[1].in_features
self.backbone.classifier = nn.Identity()
self.num_heads = max(1, min(8, self.feature_dim // 64))
self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
self.classifier = nn.Sequential(
nn.LayerNorm(self.feature_dim),
nn.Dropout(0.3),
nn.Linear(self.feature_dim, num_classes)
)
self.to(device)
def forward(self, x):
x = x.to(self.device)
features = self.backbone(x)
attended_features = self.attention(features)
logits = self.classifier(attended_features)
return logits, attended_features
class ModelManager:
_instance = None
_initialized = False
def __init__(self):
self.model_yolo = None # YOLO模型
self.model = None # 品種分類模型
@classmethod
async def get_instance(cls):
if not cls._instance:
cls._instance = cls()
return cls._instance
@spaces.GPU
async def initialize(self):
# 只初始化一次模型
if not self._initialized:
# 初始化 YOLO
self.model_yolo = YOLO('yolov8l.pt')
# 初始化品種分類模型
num_classes = len(dog_breeds)
self.model = BaseModel(num_classes=num_classes)
checkpoint = torch.load('124_best_model_dog.pth')
self.model.load_state_dict(checkpoint['base_model'], strict=False)
self.model.eval()
self._initialized = True
# Image preprocessing function
def preprocess_image(image):
# If the image is numpy.ndarray turn into PIL.Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Use torchvision.transforms to process images
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
@spaces.GPU
async def predict_single_dog(image):
"""
Predicts the dog breed using only the classifier.
Args:
image: PIL Image or numpy array
Returns:
tuple: (top1_prob, topk_breeds, relative_probs)
"""
manager = await ModelManager.get_instance()
await manager.initialize()
image_tensor = preprocess_image(image).to(device)
with torch.no_grad():
# Get model outputs (只使用logits,不需要features)
logits = model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素
probs = F.softmax(logits, dim=1)
# Classifier prediction
top5_prob, top5_idx = torch.topk(probs, k=5)
breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
probabilities = [prob.item() for prob in top5_prob[0]]
# Calculate relative probabilities
sum_probs = sum(probabilities[:3]) # 只取前三個來計算相對概率
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
# Debug output
print("\nClassifier Predictions:")
for breed, prob in zip(breeds[:5], probabilities[:5]):
print(f"{breed}: {prob:.4f}")
return probabilities[0], breeds[:3], relative_probs
@spaces.GPU
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
manager = await ModelManager.get_instance()
await manager.initialize()
results = manager.model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
dogs = []
boxes = []
for box in results.boxes:
if box.cls == 16: # COCO dataset class for dog is 16
xyxy = box.xyxy[0].tolist()
confidence = box.conf.item()
boxes.append((xyxy, confidence))
if not boxes:
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
else:
nms_boxes = non_max_suppression(boxes, iou_threshold)
for box, confidence in nms_boxes:
x1, y1, x2, y2 = box
w, h = x2 - x1, y2 - y1
x1 = max(0, x1 - w * 0.05)
y1 = max(0, y1 - h * 0.05)
x2 = min(image.width, x2 + w * 0.05)
y2 = min(image.height, y2 + h * 0.05)
cropped_image = image.crop((x1, y1, x2, y2))
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
return dogs
def non_max_suppression(boxes, iou_threshold):
keep = []
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
while boxes:
current = boxes.pop(0)
keep.append(current)
boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
return keep
def calculate_iou(box1, box2):
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
iou = intersection / float(area1 + area2 - intersection)
return iou
def create_breed_comparison(breed1: str, breed2: str) -> dict:
breed1_info = get_dog_description(breed1)
breed2_info = get_dog_description(breed2)
# 標準化數值轉換
value_mapping = {
'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
}
comparison_data = {
breed1: {},
breed2: {}
}
for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
comparison_data[breed] = {
'Size': value_mapping['Size'].get(info['Size'], 2), # 預設 Medium
'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2), # 預設 Moderate
'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
'Good_with_Children': info['Good with Children'] == 'Yes',
'Original_Data': info
}
return comparison_data
@spaces.GPU
async def predict(image):
"""
Main prediction function that handles both single and multiple dog detection.
Args:
image: PIL Image or numpy array
Returns:
tuple: (html_output, annotated_image, initial_state)
"""
manager = await ModelManager.get_instance()
await manager.initialize()
if image is None:
return format_warning_html("Please upload an image to start."), None, None
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Detect dogs in the image
dogs = await detect_multiple_dogs(image)
color_scheme = get_color_scheme(len(dogs) == 1)
# Prepare for annotation
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
dogs_info = ""
# Process each detected dog
for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
# Draw box and label on image
draw.rectangle(box, outline=color, width=4)
label = f"Dog {i+1}"
label_bbox = draw.textbbox((0, 0), label, font=font)
label_width = label_bbox[2] - label_bbox[0]
label_height = label_bbox[3] - label_bbox[1]
# Draw label background and text
label_x = box[0] + 5
label_y = box[1] + 5
draw.rectangle(
[label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
fill='white',
outline=color,
width=2
)
draw.text((label_x, label_y), label, fill=color, font=font)
# Predict breed
top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
combined_confidence = detection_confidence * top1_prob
# Format results based on confidence with error handling
try:
if combined_confidence < 0.2:
dogs_info += format_error_message(color, i+1)
elif top1_prob >= 0.45:
breed = topk_breeds[0]
description = get_dog_description(breed)
# Handle missing breed description
if description is None:
# 如果沒有描述,創建一個基本描述
description = {
"Name": breed,
"Size": "Unknown",
"Exercise Needs": "Unknown",
"Grooming Needs": "Unknown",
"Care Level": "Unknown",
"Good with Children": "Unknown",
"Description": f"Identified as {breed.replace('_', ' ')}"
}
dogs_info += format_single_dog_result(breed, description, color)
else:
# 修改format_multiple_breeds_result的調用,包含錯誤處理
dogs_info += format_multiple_breeds_result(
topk_breeds,
relative_probs,
color,
i+1,
lambda breed: get_dog_description(breed) or {
"Name": breed,
"Size": "Unknown",
"Exercise Needs": "Unknown",
"Grooming Needs": "Unknown",
"Care Level": "Unknown",
"Good with Children": "Unknown",
"Description": f"Identified as {breed.replace('_', ' ')}"
}
)
except Exception as e:
print(f"Error formatting results for dog {i+1}: {str(e)}")
dogs_info += format_error_message(color, i+1)
# Wrap final HTML output
html_output = format_multi_dog_container(dogs_info)
# Prepare initial state
initial_state = {
"dogs_info": dogs_info,
"image": annotated_image,
"is_multi_dog": len(dogs) > 1,
"html_output": html_output
}
return html_output, annotated_image, initial_state
except Exception as e:
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_msg)
return format_warning_html(error_msg), None, None
def show_details_html(choice, previous_output, initial_state):
"""
Generate detailed HTML view for a selected breed.
Args:
choice: str, Selected breed option
previous_output: str, Previous HTML output
initial_state: dict, Current state information
Returns:
tuple: (html_output, gradio_update, updated_state)
"""
if not choice:
return previous_output, gr.update(visible=True), initial_state
try:
breed = choice.split("More about ")[-1]
description = get_dog_description(breed)
html_output = format_breed_details_html(description, breed)
# Update state
initial_state["current_description"] = html_output
initial_state["original_buttons"] = initial_state.get("buttons", [])
return html_output, gr.update(visible=True), initial_state
except Exception as e:
error_msg = f"An error occurred while showing details: {e}"
print(error_msg)
return format_warning_html(error_msg), gr.update(visible=True), initial_state
def main():
with gr.Blocks(css=get_css_styles()) as iface:
# Header HTML
gr.HTML("""
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
🐾 PawMatch AI
</h1>
<h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
Your Smart Dog Breed Guide
</h2>
<div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
<p style='color: #718096; font-size: 0.9em;'>
Powered by AI • Breed Recognition • Smart Matching • Companion Guide
</p>
</header>
""")
# 先創建歷史組件實例(但不創建標籤頁)
history_component = create_history_component()
with gr.Tabs():
# 1. 品種檢測標籤頁
example_images = [
'Border_Collie.jpg',
'Golden_Retriever.jpeg',
'Saint_Bernard.jpeg',
'Samoyed.jpg',
'French_Bulldog.jpeg'
]
detection_components = create_detection_tab(predict, example_images)
# 2. 品種比較標籤頁
comparison_components = create_comparison_tab(
dog_breeds=dog_breeds,
get_dog_description=get_dog_description,
breed_health_info=breed_health_info,
breed_noise_info=breed_noise_info
)
# 3. 品種推薦標籤頁
recommendation_components = create_recommendation_tab(
UserPreferences=UserPreferences,
get_breed_recommendations=get_breed_recommendations,
format_recommendation_html=format_recommendation_html,
history_component=history_component
)
# 4. 最後創建歷史記錄標籤頁
create_history_tab(history_component)
# Footer
gr.HTML('''
<div style="
display: flex;
align-items: center;
justify-content: center;
gap: 20px;
padding: 20px 0;
">
<p style="
font-family: 'Arial', sans-serif;
font-size: 14px;
font-weight: 500;
letter-spacing: 2px;
background: linear-gradient(90deg, #555, #007ACC);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin: 0;
text-transform: uppercase;
display: inline-block;
">EXPLORE THE CODE →</p>
<a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
<img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
</a>
</div>
''')
return iface
if __name__ == "__main__":
iface = main()
iface.launch()