PawMatchAI / device_manager.py
DawnC's picture
Create device_manager.py
62ed182
raw
history blame
3.06 kB
from functools import wraps
import torch
from huggingface_hub import HfApi
import os
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class DeviceManager:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(DeviceManager, cls).__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if self._initialized:
return
self._initialized = True
self._current_device = None
self._zero_gpu_available = None
def check_zero_gpu_availability(self):
try:
api = HfApi()
# 檢查環境變數或其他方式確認是否在 Spaces 環境
if 'SPACE_ID' in os.environ:
# 這裡可以添加更多具體的 ZeroGPU 可用性檢查
self._zero_gpu_available = True
return True
except Exception as e:
logger.warning(f"Error checking ZeroGPU availability: {e}")
self._zero_gpu_available = False
return False
def get_optimal_device(self):
if self._current_device is None:
if self.check_zero_gpu_availability():
self._current_device = torch.device('cuda')
logger.info("Using ZeroGPU")
else:
self._current_device = torch.device('cpu')
logger.info("Using CPU")
return self._current_device
def move_to_device(self, tensor_or_model):
device = self.get_optimal_device()
if hasattr(tensor_or_model, 'to'):
return tensor_or_model.to(device)
return tensor_or_model
def device_handler(func):
"""Decorator for handling device placement"""
@wraps(func)
async def wrapper(*args, **kwargs):
device_mgr = DeviceManager()
# 處理輸入參數的設備轉換
def process_arg(arg):
if torch.is_tensor(arg) or hasattr(arg, 'to'):
return device_mgr.move_to_device(arg)
return arg
processed_args = [process_arg(arg) for arg in args]
processed_kwargs = {k: process_arg(v) for k, v in kwargs.items()}
try:
result = await func(*processed_args, **processed_kwargs)
# 處理輸出結果的設備轉換
if torch.is_tensor(result):
return device_mgr.move_to_device(result)
elif isinstance(result, tuple):
return tuple(device_mgr.move_to_device(r) if torch.is_tensor(r) else r for r in result)
return result
except RuntimeError as e:
if "out of memory" in str(e):
logger.warning("GPU memory exceeded, falling back to CPU")
device_mgr._current_device = torch.device('cpu')
return await wrapper(*args, **kwargs)
raise e
return wrapper