Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,30 @@
|
|
1 |
-
from fastapi import FastAPI
|
|
|
|
|
2 |
|
3 |
app = FastAPI()
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
@app.get("/")
|
6 |
def read_root():
|
7 |
return {"Hello": "World"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
|
5 |
app = FastAPI()
|
6 |
|
7 |
+
# Load the model and tokenizer
|
8 |
+
model_name = "EleutherAI/gpt-neo-1.3B" # Replace with your desired model
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
+
|
12 |
@app.get("/")
|
13 |
def read_root():
|
14 |
return {"Hello": "World"}
|
15 |
+
|
16 |
+
@app.post("/predict")
|
17 |
+
async def predict(request: Request):
|
18 |
+
data = await request.json()
|
19 |
+
prompt = data.get("prompt", "")
|
20 |
+
if not prompt:
|
21 |
+
return {"error": "Prompt is required"}
|
22 |
+
|
23 |
+
# Tokenize the input
|
24 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cpu") # Use "cuda" if GPU is enabled
|
25 |
+
|
26 |
+
# Generate tokens
|
27 |
+
outputs = model.generate(inputs.input_ids, max_length=40, num_return_sequences=1)
|
28 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
29 |
+
|
30 |
+
return {"response": response}
|