Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -7,49 +7,25 @@ import torch.nn.functional as F
|
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
-
# Retrieve the token from environment variable
|
11 |
-
hf_token = os.environ.get("HF_AUTH_TOKEN", None)
|
12 |
-
if hf_token is None:
|
13 |
-
print("WARNING: No HF_AUTH_TOKEN found in environment. "
|
14 |
-
"Make sure to set a Hugging Face token if the model is gated.")
|
15 |
-
|
16 |
-
|
17 |
# -------------------------------------------------------------------------
|
18 |
-
#
|
19 |
-
#
|
20 |
# -------------------------------------------------------------------------
|
21 |
-
model_name = "
|
22 |
|
23 |
-
|
24 |
-
# If the repo is gated, you may need:
|
25 |
-
# use_auth_token="YOUR_HF_TOKEN",
|
26 |
-
# trust_remote_code=True,
|
27 |
-
# or you can set environment variables in your HF Space to authenticate.
|
28 |
-
# -------------------------------------------------------------------------
|
29 |
-
print(f"Loading model/tokenizer from: {model_name}")
|
30 |
tokenizer = AutoTokenizer.from_pretrained(
|
31 |
model_name,
|
32 |
-
trust_remote_code=True
|
33 |
-
use_auth_token=hf_token,
|
34 |
)
|
35 |
|
36 |
-
|
37 |
-
# If you had GPU available, you might do:
|
38 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
39 |
-
# model_name,
|
40 |
-
# torch_dtype=torch.float16,
|
41 |
-
# device_map="auto",
|
42 |
-
# trust_remote_code=True
|
43 |
-
# )
|
44 |
-
# But for CPU, we do a simpler load:
|
45 |
-
# -------------------------------------------------------------------------
|
46 |
model = AutoModelForCausalLM.from_pretrained(
|
47 |
model_name,
|
48 |
-
trust_remote_code=True
|
49 |
-
use_auth_token=hf_token,
|
50 |
)
|
51 |
|
52 |
-
# Choose device based on availability
|
53 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
54 |
print(f"Using device: {device}")
|
55 |
model.to(device)
|
@@ -57,9 +33,9 @@ model.to(device)
|
|
57 |
@app.post("/predict")
|
58 |
async def predict(request: Request):
|
59 |
"""
|
60 |
-
Endpoint for streaming responses from
|
61 |
Expects JSON: { "prompt": "<Your prompt>" }
|
62 |
-
Returns a text/event-stream of tokens.
|
63 |
"""
|
64 |
data = await request.json()
|
65 |
prompt = data.get("prompt", "")
|
@@ -72,19 +48,16 @@ async def predict(request: Request):
|
|
72 |
attention_mask = inputs.attention_mask # same shape
|
73 |
|
74 |
def token_generator():
|
75 |
-
"""
|
76 |
-
A generator that yields tokens one by one for SSE streaming.
|
77 |
-
"""
|
78 |
nonlocal input_ids, attention_mask
|
79 |
|
80 |
# Basic generation hyperparameters
|
81 |
temperature = 0.7
|
82 |
top_p = 0.9
|
83 |
-
max_new_tokens = 30 # Increase
|
84 |
|
85 |
for _ in range(max_new_tokens):
|
86 |
with torch.no_grad():
|
87 |
-
# 1) Forward pass: compute logits for next token
|
88 |
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
89 |
next_token_logits = outputs.logits[:, -1, :]
|
90 |
|
@@ -101,7 +74,7 @@ async def predict(request: Request):
|
|
101 |
filtered_probs = sorted_probs[valid_indices]
|
102 |
filtered_indices = sorted_indices[valid_indices]
|
103 |
|
104 |
-
# 5) If no tokens
|
105 |
if len(filtered_probs) == 0:
|
106 |
next_token_id = torch.argmax(next_token_probs)
|
107 |
else:
|
@@ -115,18 +88,18 @@ async def predict(request: Request):
|
|
115 |
# shape [1] => [1,1]
|
116 |
next_token_id = next_token_id.unsqueeze(-1)
|
117 |
|
118 |
-
# 7) Append token to input_ids
|
119 |
input_ids = torch.cat([input_ids, next_token_id], dim=-1)
|
120 |
|
121 |
-
# 8) Update
|
122 |
new_mask = attention_mask.new_ones((attention_mask.size(0), 1))
|
123 |
attention_mask = torch.cat([attention_mask, new_mask], dim=-1)
|
124 |
|
125 |
-
# 9) Decode and yield
|
126 |
token = tokenizer.decode(next_token_id.squeeze(), skip_special_tokens=True)
|
127 |
yield token + " "
|
128 |
|
129 |
-
# 10) Stop if
|
130 |
if tokenizer.eos_token_id is not None:
|
131 |
if next_token_id.squeeze().item() == tokenizer.eos_token_id:
|
132 |
break
|
|
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# -------------------------------------------------------------------------
|
11 |
+
# Since Falcon 7B Instruct is not gated, you do NOT need an HF token.
|
12 |
+
# We omit any 'use_auth_token' parameter.
|
13 |
# -------------------------------------------------------------------------
|
14 |
+
model_name = "tiiuae/falcon-7b-instruct"
|
15 |
|
16 |
+
print(f"Loading tokenizer from: {model_name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
tokenizer = AutoTokenizer.from_pretrained(
|
18 |
model_name,
|
19 |
+
trust_remote_code=True
|
|
|
20 |
)
|
21 |
|
22 |
+
print(f"Loading model from: {model_name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
model = AutoModelForCausalLM.from_pretrained(
|
24 |
model_name,
|
25 |
+
trust_remote_code=True
|
|
|
26 |
)
|
27 |
|
28 |
+
# Choose device based on availability (CPU or GPU)
|
29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
print(f"Using device: {device}")
|
31 |
model.to(device)
|
|
|
33 |
@app.post("/predict")
|
34 |
async def predict(request: Request):
|
35 |
"""
|
36 |
+
Endpoint for streaming responses from Falcon-7B-Instruct.
|
37 |
Expects JSON: { "prompt": "<Your prompt>" }
|
38 |
+
Returns a text/event-stream of tokens (SSE).
|
39 |
"""
|
40 |
data = await request.json()
|
41 |
prompt = data.get("prompt", "")
|
|
|
48 |
attention_mask = inputs.attention_mask # same shape
|
49 |
|
50 |
def token_generator():
|
|
|
|
|
|
|
51 |
nonlocal input_ids, attention_mask
|
52 |
|
53 |
# Basic generation hyperparameters
|
54 |
temperature = 0.7
|
55 |
top_p = 0.9
|
56 |
+
max_new_tokens = 30 # Increase if you want longer outputs
|
57 |
|
58 |
for _ in range(max_new_tokens):
|
59 |
with torch.no_grad():
|
60 |
+
# 1) Forward pass: compute logits for the next token
|
61 |
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
62 |
next_token_logits = outputs.logits[:, -1, :]
|
63 |
|
|
|
74 |
filtered_probs = sorted_probs[valid_indices]
|
75 |
filtered_indices = sorted_indices[valid_indices]
|
76 |
|
77 |
+
# 5) If no tokens remain after filtering, fall back to greedy
|
78 |
if len(filtered_probs) == 0:
|
79 |
next_token_id = torch.argmax(next_token_probs)
|
80 |
else:
|
|
|
88 |
# shape [1] => [1,1]
|
89 |
next_token_id = next_token_id.unsqueeze(-1)
|
90 |
|
91 |
+
# 7) Append the new token to input_ids
|
92 |
input_ids = torch.cat([input_ids, next_token_id], dim=-1)
|
93 |
|
94 |
+
# 8) Update the attention mask
|
95 |
new_mask = attention_mask.new_ones((attention_mask.size(0), 1))
|
96 |
attention_mask = torch.cat([attention_mask, new_mask], dim=-1)
|
97 |
|
98 |
+
# 9) Decode and yield the generated token
|
99 |
token = tokenizer.decode(next_token_id.squeeze(), skip_special_tokens=True)
|
100 |
yield token + " "
|
101 |
|
102 |
+
# 10) Stop if EOS token is generated (if the model uses one)
|
103 |
if tokenizer.eos_token_id is not None:
|
104 |
if next_token_id.squeeze().item() == tokenizer.eos_token_id:
|
105 |
break
|