Spaces:
Runtime error
Runtime error
File size: 47,601 Bytes
8cf621f 56d98ec 8cf621f a5e860d 183a544 ba2d4df a4230c4 d959fd1 70cb62c 8cf621f 318cc53 6317bfa 318cc53 f3db00f fb1ecc6 d576879 fb1ecc6 2d0313b 27b66a1 2d0313b 108fbc5 e66aece a887b56 e66aece 108fbc5 9a01241 f3db00f 8cf621f 3bd9280 603edc1 3e178d1 3644a6d 108fbc5 d959fd1 56d98ec 2ba7b49 8041e10 6d68276 2ba7b49 ce5c4dc 8cf621f 2ba7b49 dc956e2 9aa4575 5393c5e c3ee46e 5b961a1 6d68276 6e0579e 6d68276 60a7656 6d68276 603edc1 6d68276 60a7656 6d68276 60a7656 2dc2143 ac2cf4c c3ee46e 2230a05 6d68276 0247b15 108fbc5 a887b56 108fbc5 a887b56 108fbc5 a887b56 108fbc5 823beb2 649b6d2 823beb2 108fbc5 8cf621f 108fbc5 8cf621f 2ba7b49 6d79cf7 c3ee46e 2ba7b49 c3ee46e 2ba7b49 c3ee46e 2ba7b49 ac2cf4c 8cf621f 1880ba2 8cf621f 539297a 8cf621f 539297a 5fdcc2f 8cf621f 5393c5e d0e883b 5d7a272 8cf621f 13476fb acd3d26 5393c5e dc956e2 8cf621f f85bfb8 25783c2 8cf621f 7ea899d 81301d6 8cf621f 81301d6 cef3e2b 8cf621f acd3d26 6d68276 9cab0d2 58a6b7a 6d68276 8cf621f 89c7e88 8cf621f 705de0b f381212 99d5d53 f381212 8cf621f 7f4ea28 8cf621f 4deedc1 83c344a 4deedc1 8cf621f efa8767 998dc61 8cf621f c809884 8cf621f 9ff7b40 8cf621f 9ff7b40 8cf621f 7900969 8cf621f bcf7a69 f85bfb8 8cf621f d0e883b f85bfb8 d0e883b f85bfb8 d0e883b 8cf621f f85bfb8 e01e402 8cf621f ec4f30e 8c17b9e d0d69b6 ee3e6e6 8c17b9e 8cf621f 728f4ca 66161b9 728f4ca 5d8c295 3842ab5 116d146 fe92701 116d146 3842ab5 1b64aba 11adbad 1b64aba 3842ab5 5fdcc2f 7bae9c3 11adbad 84e2509 11adbad 3842ab5 7bae9c3 89c7e88 3842ab5 8fedb12 3bd9280 8fedb12 670cfd5 7f4ea28 62690c8 25783c2 62690c8 25783c2 7f4ea28 e354ae1 64ec6c9 e354ae1 9d7a2f2 116d146 c056d22 116d146 8c6dcfa 3bd9280 8c6dcfa 8a75814 8c6dcfa 8b23b39 1eab9d7 8c6dcfa 8a75814 8c6dcfa 3bd9280 89c7e88 3bd9280 5d8c295 d02c2ed 7f4ea28 8248262 62690c8 e354ae1 62690c8 5d8c295 183a544 71612f5 5393c5e 5fdcc2f 5393c5e 5fdcc2f 183a544 953e4ee 183a544 5735889 183a544 f9b040e 728f4ca a7f0c75 96acf8a a71dbb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 |
import json
import os
import shutil
import requests
import threading
import time
import random
import inspect
import logging
import warnings
from requests import HTTPError
from dataclasses import asdict
from pathlib import Path
from typing import Callable, Literal, AsyncGenerator
from gradio.utils import SyncToAsyncIterator, async_iteration
from gradio.components import (
Button,
Chatbot,
# IOComponent,
Markdown,
State,
Textbox,
get_component_instance,
)
from huggingface_hub.utils import (
BadRequestError,
build_hf_headers,
get_session,
hf_raise_for_status,
)
from huggingface_hub.inference._common import (
TASKS_EXPECTING_IMAGES,
ContentT,
# InferenceTimeoutError,
ModelStatus,
_b64_encode,
_b64_to_image,
_bytes_to_dict,
_bytes_to_image,
_bytes_to_list,
_import_numpy,
_is_tgi_server,
_open_as_binary,
_set_as_non_tgi,
_stream_text_generation_response,
)
from huggingface_hub.inference._text_generation import (
TextGenerationParameters,
TextGenerationRequest,
TextGenerationResponse,
TextGenerationStreamResponse,
raise_text_generation_error,
)
from huggingface_hub.inference._types import (
ClassificationOutput,
ConversationalOutput,
FillMaskOutput,
ImageSegmentationOutput,
ObjectDetectionOutput,
QuestionAnsweringOutput,
TableQuestionAnsweringOutput,
TokenClassificationOutput,
)
from gradio.themes import ThemeClass as Theme
import gradio as gr
from gradio.helpers import special_args
from gradio.routes import Request
import anyio
from huggingface_hub import HfApi, Repository, InferenceClient
from utils import force_git_push
from typing import (
TYPE_CHECKING,
Any,
Dict,
Iterable,
List,
Literal,
Optional,
Union,
overload,
)
logger = logging.getLogger(__name__)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DATASET_REPO_URL = os.getenv("DATASET_REPO_URL")
MODEL_NAME = os.getenv("MODEL_NAME")
ENDPOINT = os.getenv("ENDPOINT")
FORCE_PUSH = os.getenv("FORCE_PUSH")
REVISION = os.getenv("REVISION")
BOT_NAME = "PersianGPT-FT"
PUSH_FREQUENCY = 60 # every minute
HISTORY = ""
PROMPT = ""
NAME = ""
SYSTEM_PROMPT = ""
TEMPERATURE = ""
MAX_NEW_TOKENS = ""
TOP_P = ""
TOP_K = ""
REPETITION_PENALTY = ""
MODEL_REPO_URL = f"https://huggingface.co/{MODEL_NAME}"
if len(ENDPOINT)>0:
API_URL = f"{ENDPOINT}" #/revision/{REVISION}" if len(REVISION)>0 else f"{ENDPOINT}"
MODEL_VERSION = f"{ENDPOINT}" if len(REVISION)==0 else REVISION
print(f'ENDPOINT: {ENDPOINT}')
else:
API_URL = f"/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2F%3Cspan class="hljs-subst">{MODEL_NAME}/revision/{REVISION}" if len(REVISION)>0 else f"/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2F%3Cspan class="hljs-subst">{MODEL_NAME}"
model_repo = Repository(local_dir="model",
clone_from=MODEL_REPO_URL,
use_auth_token=HF_TOKEN,
skip_lfs_files=True,
git_user="vpcom",
revision=REVISION)
MODEL_VERSION = model_repo.git_head_commit_url() if len(REVISION)==0 else REVISION
print(f'API URL: {API_URL}')
#print(f'Model Version: {MODEL_VERSION}')
DATA_FILENAME = "data.jsonl"
DATA_FILE = os.path.join("data", DATA_FILENAME)
data_repo = Repository(local_dir="data",
clone_from=DATASET_REPO_URL,
use_auth_token=HF_TOKEN)
stop_sequences = ["<|endoftext|>"]
class InferenceClientUS(InferenceClient):
def __init__(
self,
model: Optional[str] = None,
token: Union[str, bool, None] = None,
timeout: Optional[float] = None,
headers: Optional[Dict[str, str]] = None,
cookies: Optional[Dict[str, str]] = None,
) -> None:
super().__init__(
model=model,
token=token,
timeout=timeout,
headers=headers,
cookies=cookies,
)
def post(
self,
*,
json: Optional[Union[str, Dict, List]] = None,
data: Optional[ContentT] = None,
model: Optional[str] = None,
task: Optional[str] = None,
stream: bool = False,
) -> Union[bytes, Iterable[bytes]]:
"""
Make a POST request to the inference server.
Args:
json (`Union[str, Dict, List]`, *optional*):
The JSON data to send in the request body. Defaults to None.
data (`Union[str, Path, bytes, BinaryIO]`, *optional*):
The content to send in the request body. It can be raw bytes, a pointer to an opened file, a local file
path, or a URL to an online resource (image, audio file,...). If both `json` and `data` are passed,
`data` will take precedence. At least `json` or `data` must be provided. Defaults to None.
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. Will override the model defined at the instance level. Defaults to None.
task (`str`, *optional*):
The task to perform on the inference. Used only to default to a recommended model if `model` is not
provided. At least `model` or `task` must be provided. Defaults to None.
stream (`bool`, *optional*):
Whether to iterate over streaming APIs.
Returns:
bytes: The raw bytes returned by the server.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
"""
url = self._resolve_url(model, task)
if data is not None and json is not None:
warnings.warn("Ignoring `json` as `data` is passed as binary.")
# Set Accept header if relevant
headers = self.headers.copy()
if task in TASKS_EXPECTING_IMAGES and "Accept" not in headers:
headers["Accept"] = "image/png"
t0 = time.time()
timeout = self.timeout
while True:
with _open_as_binary(data) as data_as_binary:
try:
response = get_session().post(
url,
json=json,
data=data_as_binary,
headers=headers,
cookies=self.cookies,
timeout=self.timeout,
stream=stream,
)
except TimeoutError as error:
# Convert any `TimeoutError` to a `InferenceTimeoutError`
raise ValueError(f"Inference call timed out: {url}, {error}") # type: ignore
try:
hf_raise_for_status(response)
return response.iter_lines() if stream else response.content
except HTTPError as error:
if error.response.status_code == 503:
# If Model is unavailable, either raise a TimeoutError...
if timeout is not None and time.time() - t0 > timeout:
# raise InferenceTimeoutError(
# f"Model not loaded on the server: {url}. Please retry with a higher timeout (current:"
# f" {self.timeout}).",
# request=error.request,
# response=error.response,
# ) from error
raise ValueError(
f"Model not loaded on the server: {url}. Please retry with a higher timeout (current:"
f" {self.timeout}), Err:{error}"
# request=error.request,
# response=error.response,
)
# ...or wait 1s and retry
logger.info(f"Waiting for model to be loaded on the server: {error}")
time.sleep(1)
if timeout is not None:
timeout = max(self.timeout - (time.time() - t0), 1) # type: ignore
continue
raise
def text_generation(
self,
prompt: str,
*,
details: bool = False,
stream: bool = False,
model: Optional[str] = None,
do_sample: bool = False,
max_new_tokens: int = 20,
best_of: Optional[int] = None,
repetition_penalty: Optional[float] = None,
return_full_text: bool = False,
seed: Optional[int] = None,
stop_sequences: Optional[List[str]] = None,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
truncate: Optional[int] = None,
typical_p: Optional[float] = None,
watermark: bool = False,
decoder_input_details: bool = False,
) -> Union[str, TextGenerationResponse, Iterable[str], Iterable[TextGenerationStreamResponse]]:
"""
Given a prompt, generate the following text.
It is recommended to have Pydantic installed in order to get inputs validated. This is preferable as it allow
early failures.
API endpoint is supposed to run with the `text-generation-inference` backend (TGI). This backend is the
go-to solution to run large language models at scale. However, for some smaller models (e.g. "gpt2") the
default `transformers` + `api-inference` solution is still in use. Both approaches have very similar APIs, but
not exactly the same. This method is compatible with both approaches but some parameters are only available for
`text-generation-inference`. If some parameters are ignored, a warning message is triggered but the process
continues correctly.
To learn more about the TGI project, please refer to https://github.com/huggingface/text-generation-inference.
Args:
prompt (`str`):
Input text.
details (`bool`, *optional*):
By default, text_generation returns a string. Pass `details=True` if you want a detailed output (tokens,
probabilities, seed, finish reason, etc.). Only available for models running on with the
`text-generation-inference` backend.
stream (`bool`, *optional*):
By default, text_generation returns the full generated text. Pass `stream=True` if you want a stream of
tokens to be returned. Only available for models running on with the `text-generation-inference`
backend.
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.
do_sample (`bool`):
Activate logits sampling
max_new_tokens (`int`):
Maximum number of generated tokens
best_of (`int`):
Generate best_of sequences and return the one if the highest token logprobs
repetition_penalty (`float`):
The parameter for repetition penalty. 1.0 means no penalty. See [this
paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
return_full_text (`bool`):
Whether to prepend the prompt to the generated text
seed (`int`):
Random sampling seed
stop_sequences (`List[str]`):
Stop generating tokens if a member of `stop_sequences` is generated
temperature (`float`):
The value used to module the logits distribution.
top_k (`int`):
The number of highest probability vocabulary tokens to keep for top-k-filtering.
top_p (`float`):
If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
higher are kept for generation.
truncate (`int`):
Truncate inputs tokens to the given size
typical_p (`float`):
Typical Decoding mass
See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
watermark (`bool`):
Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
decoder_input_details (`bool`):
Return the decoder input token logprobs and ids. You must set `details=True` as well for it to be taken
into account. Defaults to `False`.
Returns:
`Union[str, TextGenerationResponse, Iterable[str], Iterable[TextGenerationStreamResponse]]`:
Generated text returned from the server:
- if `stream=False` and `details=False`, the generated text is returned as a `str` (default)
- if `stream=True` and `details=False`, the generated text is returned token by token as a `Iterable[str]`
- if `stream=False` and `details=True`, the generated text is returned with more details as a [`~huggingface_hub.inference._text_generation.TextGenerationResponse`]
- if `details=True` and `stream=True`, the generated text is returned token by token as a iterable of [`~huggingface_hub.inference._text_generation.TextGenerationStreamResponse`]
Raises:
`ValidationError`:
If input values are not valid. No HTTP call is made to the server.
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
# Case 1: generate text
>>> client.text_generation("The huggingface_hub library is ", max_new_tokens=12)
'100% open source and built to be easy to use.'
# Case 2: iterate over the generated tokens. Useful for large generation.
>>> for token in client.text_generation("The huggingface_hub library is ", max_new_tokens=12, stream=True):
... print(token)
100
%
open
source
and
built
to
be
easy
to
use
.
# Case 3: get more details about the generation process.
>>> client.text_generation("The huggingface_hub library is ", max_new_tokens=12, details=True)
TextGenerationResponse(
generated_text='100% open source and built to be easy to use.',
details=Details(
finish_reason=<FinishReason.Length: 'length'>,
generated_tokens=12,
seed=None,
prefill=[
InputToken(id=487, text='The', logprob=None),
InputToken(id=53789, text=' hugging', logprob=-13.171875),
(...)
InputToken(id=204, text=' ', logprob=-7.0390625)
],
tokens=[
Token(id=1425, text='100', logprob=-1.0175781, special=False),
Token(id=16, text='%', logprob=-0.0463562, special=False),
(...)
Token(id=25, text='.', logprob=-0.5703125, special=False)
],
best_of_sequences=None
)
)
# Case 4: iterate over the generated tokens with more details.
# Last object is more complete, containing the full generated text and the finish reason.
>>> for details in client.text_generation("The huggingface_hub library is ", max_new_tokens=12, details=True, stream=True):
... print(details)
...
TextGenerationStreamResponse(token=Token(id=1425, text='100', logprob=-1.0175781, special=False), generated_text=None, details=None)
TextGenerationStreamResponse(token=Token(id=16, text='%', logprob=-0.0463562, special=False), generated_text=None, details=None)
TextGenerationStreamResponse(token=Token(id=1314, text=' open', logprob=-1.3359375, special=False), generated_text=None, details=None)
TextGenerationStreamResponse(token=Token(id=3178, text=' source', logprob=-0.28100586, special=False), generated_text=None, details=None)
TextGenerationStreamResponse(token=Token(id=273, text=' and', logprob=-0.5961914, special=False), generated_text=None, details=None)
TextGenerationStreamResponse(token=Token(id=3426, text=' built', logprob=-1.9423828, special=False), generated_text=None, details=None)
TextGenerationStreamResponse(token=Token(id=271, text=' to', logprob=-1.4121094, special=False), generated_text=None, details=None)
TextGenerationStreamResponse(token=Token(id=314, text=' be', logprob=-1.5224609, special=False), generated_text=None, details=None)
TextGenerationStreamResponse(token=Token(id=1833, text=' easy', logprob=-2.1132812, special=False), generated_text=None, details=None)
TextGenerationStreamResponse(token=Token(id=271, text=' to', logprob=-0.08520508, special=False), generated_text=None, details=None)
TextGenerationStreamResponse(token=Token(id=745, text=' use', logprob=-0.39453125, special=False), generated_text=None, details=None)
TextGenerationStreamResponse(token=Token(
id=25,
text='.',
logprob=-0.5703125,
special=False),
generated_text='100% open source and built to be easy to use.',
details=StreamDetails(finish_reason=<FinishReason.Length: 'length'>, generated_tokens=12, seed=None)
)
```
"""
# NOTE: Text-generation integration is taken from the text-generation-inference project. It has more features
# like input/output validation (if Pydantic is installed). See `_text_generation.py` header for more details.
if decoder_input_details and not details:
warnings.warn(
"`decoder_input_details=True` has been passed to the server but `details=False` is set meaning that"
" the output from the server will be truncated."
)
decoder_input_details = False
# Validate parameters
parameters = TextGenerationParameters(
best_of=best_of,
details=details,
do_sample=do_sample,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
return_full_text=return_full_text,
seed=seed,
stop=stop_sequences if stop_sequences is not None else [],
temperature=temperature,
top_k=top_k,
top_p=top_p,
truncate=truncate,
typical_p=typical_p,
watermark=watermark,
decoder_input_details=decoder_input_details,
)
request = TextGenerationRequest(inputs=prompt, stream=stream, parameters=parameters)
payload = asdict(request)
# add the use_cache option
print(f"payload:{payload}")
payload["options"] = {}
payload["options"]['use_cache'] = False
# Remove some parameters if not a TGI server
if not _is_tgi_server(model):
ignored_parameters = []
for key in "watermark", "stop", "details", "decoder_input_details":
if payload["parameters"][key] is not None:
ignored_parameters.append(key)
del payload["parameters"][key]
if len(ignored_parameters) > 0:
warnings.warn(
"API endpoint/model for text-generation is not served via TGI. Ignoring parameters"
f" {ignored_parameters}.",
UserWarning,
)
if details:
warnings.warn(
"API endpoint/model for text-generation is not served via TGI. Parameter `details=True` will"
" be ignored meaning only the generated text will be returned.",
UserWarning,
)
details = False
if stream:
raise ValueError(
"API endpoint/model for text-generation is not served via TGI. Cannot return output as a stream."
" Please pass `stream=False` as input."
)
# Handle errors separately for more precise error messages
try:
bytes_output = self.post(json=payload, model=model, task="text-generation", stream=stream) # type: ignore
except HTTPError as e:
if isinstance(e, BadRequestError) and "The following `model_kwargs` are not used by the model" in str(e):
_set_as_non_tgi(model)
return self.text_generation( # type: ignore
prompt=prompt,
details=details,
stream=stream,
model=model,
do_sample=do_sample,
max_new_tokens=max_new_tokens,
best_of=best_of,
repetition_penalty=repetition_penalty,
return_full_text=return_full_text,
seed=seed,
stop_sequences=stop_sequences,
temperature=temperature,
top_k=top_k,
top_p=top_p,
truncate=truncate,
typical_p=typical_p,
watermark=watermark,
decoder_input_details=decoder_input_details,
)
raise_text_generation_error(e)
# Parse output
if stream:
return _stream_text_generation_response(bytes_output, details) # type: ignore
data = _bytes_to_dict(bytes_output)[0]
return TextGenerationResponse(**data) if details else data["generated_text"]
client = InferenceClientUS(
API_URL,
headers={"Authorization": f"Bearer {HF_TOKEN}"},
)
def asynchronous_push(f_stop):
if not data_repo.is_repo_clean():
# print("Repo currently clean. Ignoring push_to_hub")
# print(data_repo.huggingface_token)
# else:
data_repo.git_add(auto_lfs_track=True)
data_repo.git_commit("Auto commit by space")
if FORCE_PUSH == "yes":
force_git_push(data_repo)
else:
data_repo.git_push()
if not f_stop.is_set():
# call again in 60 seconds
threading.Timer(PUSH_FREQUENCY, asynchronous_push, [f_stop]).start()
f_stop = threading.Event()
asynchronous_push(f_stop)
def format_prompt(message, history, system_prompt):
prompt = "" # ؛
if system_prompt:
prompt += f"{system_prompt}"
for user_prompt, bot_response in history:
prompt += f"{user_prompt}"
prompt += f"{bot_response}"
prompt += f"""{message}"""
return prompt.replace('\n','؛').replace('\t','/').replace(' * ','/').replace('\u200c',' ').strip()
def generate(
prompt, history, name, system_prompt,
temperature=0.9, max_new_tokens=100, top_p=0.95, top_k=100,
repetition_penalty=1.0, seed=42,
):
global PROMPT
PROMPT = prompt
global HISTORY
HISTORY = history
global NAME
NAME = name
global SYSTEM_PROMPT
SYSTEM_PROMPT = system_prompt
global TEMPERATURE
TEMPERATURE = temperature
global MAX_NEW_TOKENS
MAX_NEW_TOKENS = max_new_tokens
global TOP_P
TOP_P = top_p
global TOP_K
TOP_K = top_k
global REPETITION_PENALTY
REPETITION_PENALTY = repetition_penalty
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
max_new_tokens=max_new_tokens,
temperature=None if temperature==1 else temperature,
top_p=None if top_p==0 else top_p,
repetition_penalty=None if repetition_penalty==1 else repetition_penalty,
top_k=None if top_k==0 else top_k,
stop_sequences=stop_sequences,
do_sample=True,
#best_of=2,
#typical_p=0.9,
#seed=seed,
)
#seed = seed + 1
history = [] # explicitly set the history as none so no history is important anymore
formatted_prompt = format_prompt(prompt, history, system_prompt)
print(f"Formatted Prompt: {formatted_prompt}")
if len(ENDPOINT)>0:
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=True, return_full_text=False)
stream = [stream] # if stream false
else:
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=True, return_full_text=False)
output = "" #f"{prompt}"
for response in stream:
#print('stream',response)
if len(ENDPOINT)>0:
if isinstance(response, str):
output += response if response else ""
else:
output += response.generated_text if response.generated_text else ""
else:
output += response
for stop_str in stop_sequences:
if output.endswith(stop_str):
output = output[:-len(stop_str)]
output = output.rstrip()
yield output
yield output
return output
additional_inputs=[
gr.Textbox(
"",
label="Who are you?",
placeholder="...Please write your name here",
),
gr.Textbox("<|endoftext|>", label="Optional system prompt"), #<|endoftext|>
gr.Slider(
label="Temperature",
value=1.0,
minimum=0.0,
maximum=1.0,
step=0.01,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=64,
minimum=0,
maximum=250,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0,
minimum=0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Top-k",
value=0,
minimum=0,
maximum=1000,
step=10,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.0,
minimum=1.0001,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
),
gr.Markdown(
"""
Model: Sorvãd (سرواد)
سرواد. [ س رْ ] (اِ) کلام منظوم و شعر. (برهان ) (غیاث ). شعر پارسی . (تفلیسی ) :
دگر نخواهم گفتن همی ثنا وغزل
که رفت یکرهه بازار و قیمت سرواد.
لبیبی (از لغت فرس ص 108).
زهی به عدل تو مرهون عمارت دنیا
خهی به مدح تومشحون رسایل و سرواد.
شمس فخری .
- Mojtaba Valipour: Model Design and Pretraining, Data Collection
- Ali Ghodsi: Advising
- Amir Mohammad Marshal Pirgheybi: Data Processing
"""
)
]
CSS = """
.gradio-container textarea {direction: rtl; white-space: pre-line;}
#component-11 #component-12 {direction: rtl; white-space: pre-line;}
p {direction: rtl; white-space: pre-line;}
"""
class Chatbot(gr.Chatbot):
def __init__(
self,
value: list[list[str | tuple[str] | tuple[str | Path, str] | None]]
| Callable
| None = None,
color_map: dict[str, str] | None = None,
*,
label: str | None = None,
every: float | None = None,
show_label: bool | None = None,
container: bool = True,
scale: int | None = None,
min_width: int = 160,
visible: bool = True,
elem_id: str | None = None,
elem_classes: list[str] | str | None = None,
height: int | None = None,
latex_delimiters: list[dict[str, str | bool]] | None = None,
rtl: bool = False,
show_share_button: bool | None = None,
show_copy_button: bool = False,
avatar_images: tuple[str | Path | None, str | Path | None] | None = None,
sanitize_html: bool = True,
render_markdown: bool = True,
bubble_full_width: bool = True,
line_breaks: bool = True,
layout: Literal["panel", "bubble"] | None = None,
**kwargs,
):
"""
Parameters:
value: Default value to show in chatbot. If callable, the function will be called whenever the app loads to set the initial value of the component.
color_map: This parameter is deprecated.
label: component name in interface.
every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute.
show_label: if True, will display label.
container: If True, will place the component in a container - providing some extra padding around the border.
scale: relative width compared to adjacent Components in a Row. For example, if Component A has scale=2, and Component B has scale=1, A will be twice as wide as B. Should be an integer.
min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
visible: If False, component will be hidden.
elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
height: height of the component in pixels.
latex_delimiters: A list of dicts of the form {"left": open delimiter (str), "right": close delimiter (str), "display": whether to display in newline (bool)} that will be used to render LaTeX expressions. If not provided, `latex_delimiters` is set to `[{ "left": "$$", "right": "$$", "display": True }]`, so only expressions enclosed in $$ delimiters will be rendered as LaTeX, and in a new line. Pass in an empty list to disable LaTeX rendering. For more information, see the [KaTeX documentation](https://katex.org/docs/autorender.html).
rtl: If True, sets the direction of the rendered text to right-to-left. Default is False, which renders text left-to-right.
show_share_button: If True, will show a share icon in the corner of the component that allows user to share outputs to Hugging Face Spaces Discussions. If False, icon does not appear. If set to None (default behavior), then the icon appears if this Gradio app is launched on Spaces, but not otherwise.
show_copy_button: If True, will show a copy button for each chatbot message.
avatar_images: Tuple of two avatar image paths or URLs for user and bot (in that order). Pass None for either the user or bot image to skip. Must be within the working directory of the Gradio app or an external URL.
sanitize_html: If False, will disable HTML sanitization for chatbot messages. This is not recommended, as it can lead to security vulnerabilities.
render_markdown: If False, will disable Markdown rendering for chatbot messages.
bubble_full_width: If False, the chat bubble will fit to the content of the message. If True (default), the chat bubble will be the full width of the component.
line_breaks: If True (default), will enable Github-flavored Markdown line breaks in chatbot messages. If False, single new lines will be ignored. Only applies if `render_markdown` is True.
layout: If "panel", will display the chatbot in a llm style layout. If "bubble", will display the chatbot with message bubbles, with the user and bot messages on alterating sides. Will default to "bubble".
"""
super().__init__(
value = value,
color_map = color_map,
label = label,
every = every,
show_label = show_label,
container = container,
scale = scale,
min_width = min_width,
visible = visible,
elem_id = elem_id,
elem_classes = elem_classes,
height = height,
latex_delimiters = latex_delimiters,
rtl = rtl,
show_share_button = show_share_button,
show_copy_button = show_copy_button,
avatar_images = avatar_images,
sanitize_html = sanitize_html,
render_markdown = render_markdown,
bubble_full_width = bubble_full_width,
line_breaks = line_breaks,
layout = layout,
kwargs=kwargs,
)
def _preprocess_chat_messages(
self, chat_message: str | dict | None
) -> str | tuple[str] | tuple[str, str] | None:
if chat_message is None:
return None
elif isinstance(chat_message, dict):
if chat_message["alt_text"] is not None:
return (chat_message["name"], chat_message["alt_text"])
else:
return (chat_message["name"],)
else: # string
return chat_message
def preprocess(
self,
y: list[list[str | dict | None] | tuple[str | dict | None, str | dict | None]],
) -> list[list[str | tuple[str] | tuple[str, str] | None]]:
if y is None:
return y
processed_messages = []
for message_pair in y:
if not isinstance(message_pair, (tuple, list)):
raise TypeError(
f"Expected a list of lists or list of tuples. Received: {message_pair}"
)
if len(message_pair) != 2:
raise TypeError(
f"Expected a list of lists of length 2 or list of tuples of length 2. Received: {message_pair}"
)
processed_messages.append(
[
self._preprocess_chat_messages(message_pair[0]),
self._preprocess_chat_messages(message_pair[1]),
]
)
return processed_messages
def _postprocess_chat_messages(
self, chat_message: str | tuple | list | None
) -> str | dict | None:
if chat_message is None:
return None
elif isinstance(chat_message, (tuple, list)):
file_uri = str(chat_message[0])
if utils.validate_url(file_uri):
filepath = file_uri
else:
filepath = self.make_temp_copy_if_needed(file_uri)
mime_type = client_utils.get_mimetype(filepath)
return {
"name": filepath,
"mime_type": mime_type,
"alt_text": chat_message[1] if len(chat_message) > 1 else None,
"data": None, # These last two fields are filled in by the frontend
"is_file": True,
}
elif isinstance(chat_message, str):
chat_message = inspect.cleandoc(chat_message)
return chat_message
else:
raise ValueError(f"Invalid message for Chatbot component: {chat_message}")
def postprocess(
self,
y: list[list[str | tuple[str] | tuple[str, str] | None] | tuple],
) -> list[list[str | dict | None]]:
"""
Parameters:
y: List of lists representing the message and response pairs. Each message and response should be a string, which may be in Markdown format. It can also be a tuple whose first element is a string or pathlib.Path filepath or URL to an image/video/audio, and second (optional) element is the alt text, in which case the media file is displayed. It can also be None, in which case that message is not displayed.
Returns:
List of lists representing the message and response. Each message and response will be a string of HTML, or a dictionary with media information. Or None if the message is not to be displayed.
"""
if y is None:
return []
processed_messages = []
for message_pair in y:
result = ""
if message_pair[0] is not None:
result += message_pair[0]
if message_pair[1] is not None:
result += message_pair[1]
if not isinstance(message_pair, (tuple, list)):
raise TypeError(
f"Expected a list of lists or list of tuples. Received: {message_pair}"
)
if len(message_pair) != 2:
raise TypeError(
f"Expected a list of lists of length 2 or list of tuples of length 2. Received: {message_pair}"
)
result = result.replace('؛','\n').replace('/',' * ').replace('\u200c',' ').strip()
result = result[:result.rfind('\n')] # filter till the end verse, do not publish not complete verses
#print('Message Pairs: ',message_pair[0],message_pair[1], result)
processed_messages.append(
[
None,self._postprocess_chat_messages(result)
#self._postprocess_chat_messages(message_pair[1])),
]
)
return processed_messages
chatbot = Chatbot(label="PersianGPT",
rtl=True,
show_share_button=True,
show_copy_button=True,
#layout="panel",
bubble_full_width = False)
textbox = gr.Textbox(
label="textbox",
container=False,
show_label=False,
lines=3,
scale=7,
placeholder="...Type something here",
rtl=True,
)
class ChatInterface(gr.ChatInterface):
def __init__(
self,
fn: Callable,
*,
chatbot: Chatbot | None = None,
textbox: Textbox | None = None,
additional_inputs = None,
additional_inputs_accordion_name: str = "Additional Inputs",
examples: list[str] | None = None,
cache_examples: bool | None = None,
title: str | None = None,
description: str | None = None,
theme: Theme | str | None = None,
css: str | None = None,
analytics_enabled: bool | None = None,
submit_btn: str | None | Button = "Submit",
stop_btn: str | None | Button = "Stop",
retry_btn: str | None | Button = "🔄 Retry",
undo_btn: str | None | Button = "↩️ Undo",
clear_btn: str | None | Button = "🗑️ Clear",
autofocus: bool = True,
):
"""
Parameters:
fn: the function to wrap the chat interface around. Should accept two parameters: a string input message and list of two-element lists of the form [[user_message, bot_message], ...] representing the chat history, and return a string response. See the Chatbot documentation for more information on the chat history format.
chatbot: an instance of the gr.Chatbot component to use for the chat interface, if you would like to customize the chatbot properties. If not provided, a default gr.Chatbot component will be created.
textbox: an instance of the gr.Textbox component to use for the chat interface, if you would like to customize the textbox properties. If not provided, a default gr.Textbox component will be created.
additional_inputs: an instance or list of instances of gradio components (or their string shortcuts) to use as additional inputs to the chatbot. If components are not already rendered in a surrounding Blocks, then the components will be displayed under the chatbot, in an accordion.
additional_inputs_accordion_name: the label of the accordion to use for additional inputs, only used if additional_inputs is provided.
examples: sample inputs for the function; if provided, appear below the chatbot and can be clicked to populate the chatbot input.
cache_examples: If True, caches examples in the server for fast runtime in examples. The default option in HuggingFace Spaces is True. The default option elsewhere is False.
title: a title for the interface; if provided, appears above chatbot in large font. Also used as the tab title when opened in a browser window.
description: a description for the interface; if provided, appears above the chatbot and beneath the title in regular font. Accepts Markdown and HTML content.
theme: Theme to use, loaded from gradio.themes.
css: custom css or path to custom css file to use with interface.
analytics_enabled: Whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable if defined, or default to True.
submit_btn: Text to display on the submit button. If None, no button will be displayed. If a Button object, that button will be used.
stop_btn: Text to display on the stop button, which replaces the submit_btn when the submit_btn or retry_btn is clicked and response is streaming. Clicking on the stop_btn will halt the chatbot response. If set to None, stop button functionality does not appear in the chatbot. If a Button object, that button will be used as the stop button.
retry_btn: Text to display on the retry button. If None, no button will be displayed. If a Button object, that button will be used.
undo_btn: Text to display on the delete last button. If None, no button will be displayed. If a Button object, that button will be used.
clear_btn: Text to display on the clear button. If None, no button will be displayed. If a Button object, that button will be used.
autofocus: If True, autofocuses to the textbox when the page loads.
"""
super().__init__(
fn = fn,
chatbot = chatbot,
textbox= textbox,
additional_inputs = additional_inputs,
additional_inputs_accordion_name = additional_inputs_accordion_name,
examples = examples,
cache_examples = cache_examples,
title = title,
description = description,
theme = theme,
css = css,
analytics_enabled = analytics_enabled,
submit_btn = submit_btn,
stop_btn = stop_btn,
retry_btn = retry_btn,
undo_btn = undo_btn,
clear_btn = clear_btn,
autofocus = autofocus,
)
async def _stream_fn(
self,
message: str,
history_with_input: list[list[str | None]],
request: Request,
*args,
) -> AsyncGenerator:
history = history_with_input[:-1]
print(f'Message is {message}')
if len(message)==0:
message = random.choice(["ا","ب","پ","ت","ث","ج","چ","ح","خ","ل","م","ن","و",
"د","ذ","ر","ز","ژ","س","ش","ص","ض","ط","ظ","ع","غ",
"ف","ق","ه","ی",
])
inputs, _, _ = special_args(
self.fn, inputs=[message, history, *args], request=request
)
if self.is_async:
generator = self.fn(*inputs)
else:
generator = await anyio.to_thread.run_sync(
self.fn, *inputs, limiter=self.limiter
)
generator = SyncToAsyncIterator(generator, self.limiter)
try:
first_response = await async_iteration(generator)
update = history + [[message, first_response]]
yield update, update
except StopIteration:
update = history + [[message, None]]
yield update, update
async for response in generator:
update = history + [[message, response]]
yield update, update
async def _submit_fn(
self,
message: str,
history_with_input: list[list[str | None]],
request: Request,
*args,
) -> tuple[list[list[str | None]], list[list[str | None]]]:
history = history_with_input[:-1]
inputs, _, _ = special_args(
self.fn, inputs=[message, history, *args], request=request
)
if self.is_async:
response = await self.fn(*inputs)
else:
response = await anyio.to_thread.run_sync(
self.fn, *inputs, limiter=self.limiter
)
history.append([message,response])
return history, history
chat_interface = ChatInterface(
generate,
chatbot=chatbot,
textbox=textbox,
#examples=examples,
additional_inputs=additional_inputs,
submit_btn = "Generate",
stop_btn = None,
retry_btn = None,
undo_btn = None,
clear_btn = None,
cache_examples=False,
)
def vote(data: gr.LikeData):
if data.liked:
print("You upvoted this response: " + data.value)
else:
print("You downvoted this response: " + data.value)
with open(DATA_FILE, "a") as jsonlfile:
json_data = [
json.dumps(
{
"time_stamp": time.time(),
"model_version":MODEL_VERSION,
"name":NAME,
"prompt": PROMPT.replace('\n','؛').replace('\t','/').replace(' * ','/').replace('\u200c',' ').strip(),
"system prompt": SYSTEM_PROMPT,
"temperature": TEMPERATURE,
"max_new_tokens": MAX_NEW_TOKENS,
"top_p": TOP_P,
"top_k": TOP_K,
"repetition_penalty": REPETITION_PENALTY,
"response": data.value.replace('\n','؛').replace('\t','/').replace(' * ','/').replace('\u200c',' ').strip(),
"label": data.liked,
}, ensure_ascii=False
)
]
print(f'we are writing this: {json_data}')
jsonlfile.write("\n".join(json_data) + "\n")
with gr.Blocks(css=CSS) as demo:
chatbot.like(vote, None, None)
chat_interface.render()
demo.queue(concurrency_count=100, api_open=False).launch(show_api=False) #, share=True) |