File size: 47,601 Bytes
8cf621f
56d98ec
8cf621f
 
a5e860d
183a544
ba2d4df
a4230c4
d959fd1
70cb62c
8cf621f
318cc53
6317bfa
318cc53
f3db00f
fb1ecc6
d576879
fb1ecc6
2d0313b
 
 
27b66a1
2d0313b
 
 
 
 
108fbc5
 
 
 
 
 
 
e66aece
 
 
a887b56
e66aece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108fbc5
9a01241
f3db00f
8cf621f
3bd9280
 
 
 
603edc1
3e178d1
3644a6d
108fbc5
 
 
 
 
 
 
 
 
 
 
 
d959fd1
 
56d98ec
2ba7b49
8041e10
6d68276
2ba7b49
ce5c4dc
8cf621f
2ba7b49
 
dc956e2
 
9aa4575
5393c5e
 
 
 
 
 
c3ee46e
5b961a1
 
6d68276
6e0579e
6d68276
60a7656
6d68276
 
 
 
 
 
603edc1
6d68276
 
60a7656
6d68276
60a7656
2dc2143
ac2cf4c
 
c3ee46e
2230a05
 
6d68276
0247b15
108fbc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a887b56
108fbc5
 
 
 
 
 
 
 
a887b56
 
 
 
 
 
 
108fbc5
a887b56
 
 
 
108fbc5
 
 
 
 
 
 
 
823beb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649b6d2
823beb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108fbc5
8cf621f
108fbc5
8cf621f
 
2ba7b49
6d79cf7
 
 
 
c3ee46e
 
2ba7b49
c3ee46e
2ba7b49
c3ee46e
2ba7b49
 
 
 
ac2cf4c
 
 
8cf621f
1880ba2
8cf621f
539297a
8cf621f
539297a
 
 
5fdcc2f
8cf621f
 
5393c5e
d0e883b
5d7a272
8cf621f
13476fb
acd3d26
5393c5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc956e2
8cf621f
 
 
 
 
 
f85bfb8
 
 
 
25783c2
8cf621f
7ea899d
 
81301d6
8cf621f
81301d6
cef3e2b
8cf621f
acd3d26
 
6d68276
 
9cab0d2
58a6b7a
6d68276
 
8cf621f
89c7e88
8cf621f
705de0b
f381212
 
99d5d53
 
 
 
f381212
 
8cf621f
7f4ea28
8cf621f
 
 
4deedc1
83c344a
4deedc1
8cf621f
 
 
efa8767
 
 
 
 
998dc61
8cf621f
 
c809884
8cf621f
 
9ff7b40
8cf621f
 
 
 
 
9ff7b40
8cf621f
7900969
8cf621f
 
 
 
 
 
bcf7a69
f85bfb8
8cf621f
 
 
 
 
d0e883b
 
f85bfb8
 
d0e883b
f85bfb8
d0e883b
 
 
8cf621f
 
f85bfb8
e01e402
8cf621f
 
 
 
ec4f30e
8c17b9e
 
d0d69b6
 
 
 
 
 
 
 
 
 
 
ee3e6e6
8c17b9e
 
 
 
 
8cf621f
 
728f4ca
66161b9
 
 
728f4ca
5d8c295
3842ab5
116d146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe92701
116d146
 
3842ab5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b64aba
11adbad
1b64aba
 
 
 
3842ab5
 
 
 
 
 
 
 
5fdcc2f
7bae9c3
11adbad
84e2509
11adbad
3842ab5
 
7bae9c3
89c7e88
3842ab5
 
 
 
 
8fedb12
 
 
3bd9280
8fedb12
670cfd5
7f4ea28
 
62690c8
 
25783c2
62690c8
25783c2
 
7f4ea28
e354ae1
64ec6c9
e354ae1
9d7a2f2
116d146
 
 
 
 
 
c056d22
116d146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c6dcfa
 
3bd9280
 
 
 
 
8c6dcfa
8a75814
8c6dcfa
8b23b39
1eab9d7
 
 
 
 
8c6dcfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a75814
8c6dcfa
3bd9280
 
 
 
 
 
 
 
 
 
 
89c7e88
 
3bd9280
 
 
5d8c295
d02c2ed
7f4ea28
8248262
62690c8
e354ae1
 
 
 
 
62690c8
5d8c295
 
183a544
 
 
 
 
 
 
 
 
 
 
71612f5
5393c5e
5fdcc2f
5393c5e
 
 
 
 
 
5fdcc2f
183a544
953e4ee
183a544
 
5735889
183a544
 
f9b040e
728f4ca
a7f0c75
96acf8a
 
a71dbb8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
import json
import os
import shutil
import requests
import threading
import time
import random
import inspect
import logging
import warnings

from requests import HTTPError
from dataclasses import asdict

from pathlib import Path
from typing import Callable, Literal, AsyncGenerator
from gradio.utils import SyncToAsyncIterator, async_iteration

from gradio.components import (
    Button,
    Chatbot,
    # IOComponent,
    Markdown,
    State,
    Textbox,
    get_component_instance,
)

from huggingface_hub.utils import (
    BadRequestError,
    build_hf_headers,
    get_session,
    hf_raise_for_status,
)
from huggingface_hub.inference._common import (
    TASKS_EXPECTING_IMAGES,
    ContentT,
    # InferenceTimeoutError,
    ModelStatus,
    _b64_encode,
    _b64_to_image,
    _bytes_to_dict,
    _bytes_to_image,
    _bytes_to_list,
    _import_numpy,
    _is_tgi_server,
    _open_as_binary,
    _set_as_non_tgi,
    _stream_text_generation_response,
)
from huggingface_hub.inference._text_generation import (
    TextGenerationParameters,
    TextGenerationRequest,
    TextGenerationResponse,
    TextGenerationStreamResponse,
    raise_text_generation_error,
)
from huggingface_hub.inference._types import (
    ClassificationOutput,
    ConversationalOutput,
    FillMaskOutput,
    ImageSegmentationOutput,
    ObjectDetectionOutput,
    QuestionAnsweringOutput,
    TableQuestionAnsweringOutput,
    TokenClassificationOutput,
)

from gradio.themes import ThemeClass as Theme

import gradio as gr
from gradio.helpers import special_args
from gradio.routes import Request
import anyio

from huggingface_hub import HfApi, Repository, InferenceClient
from utils import force_git_push

from typing import (
    TYPE_CHECKING,
    Any,
    Dict,
    Iterable,
    List,
    Literal,
    Optional,
    Union,
    overload,
)

logger = logging.getLogger(__name__)

HF_TOKEN = os.environ.get("HF_TOKEN", None)
DATASET_REPO_URL = os.getenv("DATASET_REPO_URL")
MODEL_NAME = os.getenv("MODEL_NAME")
ENDPOINT = os.getenv("ENDPOINT")
FORCE_PUSH = os.getenv("FORCE_PUSH")
REVISION = os.getenv("REVISION")
BOT_NAME = "PersianGPT-FT"
PUSH_FREQUENCY = 60 # every minute

HISTORY = ""
PROMPT = ""
NAME = ""
SYSTEM_PROMPT = ""
TEMPERATURE = ""
MAX_NEW_TOKENS = ""
TOP_P = ""
TOP_K = ""
REPETITION_PENALTY = ""

MODEL_REPO_URL = f"https://huggingface.co/{MODEL_NAME}"

if len(ENDPOINT)>0:
    API_URL = f"{ENDPOINT}" #/revision/{REVISION}" if len(REVISION)>0 else f"{ENDPOINT}"
    MODEL_VERSION = f"{ENDPOINT}" if len(REVISION)==0 else REVISION
    print(f'ENDPOINT: {ENDPOINT}')
else:
    API_URL = f"/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2F%3Cspan class="hljs-subst">{MODEL_NAME}/revision/{REVISION}" if len(REVISION)>0 else f"/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2F%3Cspan class="hljs-subst">{MODEL_NAME}"
    model_repo = Repository(local_dir="model", 
                        clone_from=MODEL_REPO_URL, 
                        use_auth_token=HF_TOKEN, 
                        skip_lfs_files=True,
                        git_user="vpcom",
                        revision=REVISION)
    MODEL_VERSION = model_repo.git_head_commit_url() if len(REVISION)==0 else REVISION
    print(f'API URL: {API_URL}')

#print(f'Model Version: {MODEL_VERSION}')

DATA_FILENAME = "data.jsonl"
DATA_FILE = os.path.join("data", DATA_FILENAME)
data_repo = Repository(local_dir="data", 
                  clone_from=DATASET_REPO_URL, 
                  use_auth_token=HF_TOKEN)

stop_sequences = ["<|endoftext|>"]

class InferenceClientUS(InferenceClient):
    def __init__(
        self,
        model: Optional[str] = None,
        token: Union[str, bool, None] = None,
        timeout: Optional[float] = None,
        headers: Optional[Dict[str, str]] = None,
        cookies: Optional[Dict[str, str]] = None,
    ) -> None:
        super().__init__(
            model=model,
            token=token,
            timeout=timeout,
            headers=headers,
            cookies=cookies,
        )
        
    def post(
        self,
        *,
        json: Optional[Union[str, Dict, List]] = None,
        data: Optional[ContentT] = None,
        model: Optional[str] = None,
        task: Optional[str] = None,
        stream: bool = False,
    ) -> Union[bytes, Iterable[bytes]]:
        """
        Make a POST request to the inference server.

        Args:
            json (`Union[str, Dict, List]`, *optional*):
                The JSON data to send in the request body. Defaults to None.
            data (`Union[str, Path, bytes, BinaryIO]`, *optional*):
                The content to send in the request body. It can be raw bytes, a pointer to an opened file, a local file
                path, or a URL to an online resource (image, audio file,...). If both `json` and `data` are passed,
                `data` will take precedence. At least `json` or `data` must be provided. Defaults to None.
            model (`str`, *optional*):
                The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
                Inference Endpoint. Will override the model defined at the instance level. Defaults to None.
            task (`str`, *optional*):
                The task to perform on the inference. Used only to default to a recommended model if `model` is not
                provided. At least `model` or `task` must be provided. Defaults to None.
            stream (`bool`, *optional*):
                Whether to iterate over streaming APIs.

        Returns:
            bytes: The raw bytes returned by the server.

        Raises:
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.
        """
        url = self._resolve_url(model, task)

        if data is not None and json is not None:
            warnings.warn("Ignoring `json` as `data` is passed as binary.")

        # Set Accept header if relevant
        headers = self.headers.copy()
        if task in TASKS_EXPECTING_IMAGES and "Accept" not in headers:
            headers["Accept"] = "image/png"

        t0 = time.time()
        timeout = self.timeout
        while True:
            with _open_as_binary(data) as data_as_binary:
                try:
                    response = get_session().post(
                        url,
                        json=json,
                        data=data_as_binary,
                        headers=headers,
                        cookies=self.cookies,
                        timeout=self.timeout,
                        stream=stream,
                    )
                except TimeoutError as error:
                    # Convert any `TimeoutError` to a `InferenceTimeoutError`
                    raise ValueError(f"Inference call timed out: {url}, {error}") # type: ignore

            try:
                hf_raise_for_status(response)
                return response.iter_lines() if stream else response.content
            except HTTPError as error:
                if error.response.status_code == 503:
                    # If Model is unavailable, either raise a TimeoutError...
                    if timeout is not None and time.time() - t0 > timeout:
                        # raise InferenceTimeoutError(
                        #     f"Model not loaded on the server: {url}. Please retry with a higher timeout (current:"
                        #     f" {self.timeout}).",
                        #     request=error.request,
                        #     response=error.response,
                        # ) from error
                        raise ValueError(
                            f"Model not loaded on the server: {url}. Please retry with a higher timeout (current:"
                            f" {self.timeout}), Err:{error}"
                            # request=error.request,
                            # response=error.response,
                        )
                    # ...or wait 1s and retry
                    logger.info(f"Waiting for model to be loaded on the server: {error}")
                    time.sleep(1)
                    if timeout is not None:
                        timeout = max(self.timeout - (time.time() - t0), 1)  # type: ignore
                    continue
                raise

    def text_generation(
        self,
        prompt: str,
        *,
        details: bool = False,
        stream: bool = False,
        model: Optional[str] = None,
        do_sample: bool = False,
        max_new_tokens: int = 20,
        best_of: Optional[int] = None,
        repetition_penalty: Optional[float] = None,
        return_full_text: bool = False,
        seed: Optional[int] = None,
        stop_sequences: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
        watermark: bool = False,
        decoder_input_details: bool = False,
    ) -> Union[str, TextGenerationResponse, Iterable[str], Iterable[TextGenerationStreamResponse]]:
        """
        Given a prompt, generate the following text.

        It is recommended to have Pydantic installed in order to get inputs validated. This is preferable as it allow
        early failures.

        API endpoint is supposed to run with the `text-generation-inference` backend (TGI). This backend is the
        go-to solution to run large language models at scale. However, for some smaller models (e.g. "gpt2") the
        default `transformers` + `api-inference` solution is still in use. Both approaches have very similar APIs, but
        not exactly the same. This method is compatible with both approaches but some parameters are only available for
        `text-generation-inference`. If some parameters are ignored, a warning message is triggered but the process
        continues correctly.

        To learn more about the TGI project, please refer to https://github.com/huggingface/text-generation-inference.

        Args:
            prompt (`str`):
                Input text.
            details (`bool`, *optional*):
                By default, text_generation returns a string. Pass `details=True` if you want a detailed output (tokens,
                probabilities, seed, finish reason, etc.). Only available for models running on with the
                `text-generation-inference` backend.
            stream (`bool`, *optional*):
                By default, text_generation returns the full generated text. Pass `stream=True` if you want a stream of
                tokens to be returned. Only available for models running on with the `text-generation-inference`
                backend.
            model (`str`, *optional*):
                The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
                Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.
            do_sample (`bool`):
                Activate logits sampling
            max_new_tokens (`int`):
                Maximum number of generated tokens
            best_of (`int`):
                Generate best_of sequences and return the one if the highest token logprobs
            repetition_penalty (`float`):
                The parameter for repetition penalty. 1.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
            return_full_text (`bool`):
                Whether to prepend the prompt to the generated text
            seed (`int`):
                Random sampling seed
            stop_sequences (`List[str]`):
                Stop generating tokens if a member of `stop_sequences` is generated
            temperature (`float`):
                The value used to module the logits distribution.
            top_k (`int`):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation.
            truncate (`int`):
                Truncate inputs tokens to the given size
            typical_p (`float`):
                Typical Decoding mass
                See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
            watermark (`bool`):
                Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
            decoder_input_details (`bool`):
                Return the decoder input token logprobs and ids. You must set `details=True` as well for it to be taken
                into account. Defaults to `False`.

        Returns:
            `Union[str, TextGenerationResponse, Iterable[str], Iterable[TextGenerationStreamResponse]]`:
            Generated text returned from the server:
            - if `stream=False` and `details=False`, the generated text is returned as a `str` (default)
            - if `stream=True` and `details=False`, the generated text is returned token by token as a `Iterable[str]`
            - if `stream=False` and `details=True`, the generated text is returned with more details as a [`~huggingface_hub.inference._text_generation.TextGenerationResponse`]
            - if `details=True` and `stream=True`, the generated text is returned token by token as a iterable of [`~huggingface_hub.inference._text_generation.TextGenerationStreamResponse`]

        Raises:
            `ValidationError`:
                If input values are not valid. No HTTP call is made to the server.
            [`InferenceTimeoutError`]:
                If the model is unavailable or the request times out.
            `HTTPError`:
                If the request fails with an HTTP error status code other than HTTP 503.

        Example:
        ```py
        >>> from huggingface_hub import InferenceClient
        >>> client = InferenceClient()

        # Case 1: generate text
        >>> client.text_generation("The huggingface_hub library is ", max_new_tokens=12)
        '100% open source and built to be easy to use.'

        # Case 2: iterate over the generated tokens. Useful for large generation.
        >>> for token in client.text_generation("The huggingface_hub library is ", max_new_tokens=12, stream=True):
        ...     print(token)
        100
        %
        open
        source
        and
        built
        to
        be
        easy
        to
        use
        .

        # Case 3: get more details about the generation process.
        >>> client.text_generation("The huggingface_hub library is ", max_new_tokens=12, details=True)
        TextGenerationResponse(
            generated_text='100% open source and built to be easy to use.',
            details=Details(
                finish_reason=<FinishReason.Length: 'length'>,
                generated_tokens=12,
                seed=None,
                prefill=[
                    InputToken(id=487, text='The', logprob=None),
                    InputToken(id=53789, text=' hugging', logprob=-13.171875),
                    (...)
                    InputToken(id=204, text=' ', logprob=-7.0390625)
                ],
                tokens=[
                    Token(id=1425, text='100', logprob=-1.0175781, special=False),
                    Token(id=16, text='%', logprob=-0.0463562, special=False),
                    (...)
                    Token(id=25, text='.', logprob=-0.5703125, special=False)
                ],
                best_of_sequences=None
            )
        )

        # Case 4: iterate over the generated tokens with more details.
        # Last object is more complete, containing the full generated text and the finish reason.
        >>> for details in client.text_generation("The huggingface_hub library is ", max_new_tokens=12, details=True, stream=True):
        ...     print(details)
        ...
        TextGenerationStreamResponse(token=Token(id=1425, text='100', logprob=-1.0175781, special=False), generated_text=None, details=None)
        TextGenerationStreamResponse(token=Token(id=16, text='%', logprob=-0.0463562, special=False), generated_text=None, details=None)
        TextGenerationStreamResponse(token=Token(id=1314, text=' open', logprob=-1.3359375, special=False), generated_text=None, details=None)
        TextGenerationStreamResponse(token=Token(id=3178, text=' source', logprob=-0.28100586, special=False), generated_text=None, details=None)
        TextGenerationStreamResponse(token=Token(id=273, text=' and', logprob=-0.5961914, special=False), generated_text=None, details=None)
        TextGenerationStreamResponse(token=Token(id=3426, text=' built', logprob=-1.9423828, special=False), generated_text=None, details=None)
        TextGenerationStreamResponse(token=Token(id=271, text=' to', logprob=-1.4121094, special=False), generated_text=None, details=None)
        TextGenerationStreamResponse(token=Token(id=314, text=' be', logprob=-1.5224609, special=False), generated_text=None, details=None)
        TextGenerationStreamResponse(token=Token(id=1833, text=' easy', logprob=-2.1132812, special=False), generated_text=None, details=None)
        TextGenerationStreamResponse(token=Token(id=271, text=' to', logprob=-0.08520508, special=False), generated_text=None, details=None)
        TextGenerationStreamResponse(token=Token(id=745, text=' use', logprob=-0.39453125, special=False), generated_text=None, details=None)
        TextGenerationStreamResponse(token=Token(
            id=25,
            text='.',
            logprob=-0.5703125,
            special=False),
            generated_text='100% open source and built to be easy to use.',
            details=StreamDetails(finish_reason=<FinishReason.Length: 'length'>, generated_tokens=12, seed=None)
        )
        ```
        """
        # NOTE: Text-generation integration is taken from the text-generation-inference project. It has more features
        # like input/output validation (if Pydantic is installed). See `_text_generation.py` header for more details.

        if decoder_input_details and not details:
            warnings.warn(
                "`decoder_input_details=True` has been passed to the server but `details=False` is set meaning that"
                " the output from the server will be truncated."
            )
            decoder_input_details = False

        # Validate parameters
        parameters = TextGenerationParameters(
            best_of=best_of,
            details=details,
            do_sample=do_sample,
            max_new_tokens=max_new_tokens,
            repetition_penalty=repetition_penalty,
            return_full_text=return_full_text,
            seed=seed,
            stop=stop_sequences if stop_sequences is not None else [],
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            truncate=truncate,
            typical_p=typical_p,
            watermark=watermark,
            decoder_input_details=decoder_input_details,
        )
        request = TextGenerationRequest(inputs=prompt, stream=stream, parameters=parameters)
        payload = asdict(request)


        # add the use_cache option
        print(f"payload:{payload}")
        payload["options"] = {}
        payload["options"]['use_cache'] = False

        # Remove some parameters if not a TGI server
        if not _is_tgi_server(model):
            ignored_parameters = []
            for key in "watermark", "stop", "details", "decoder_input_details":
                if payload["parameters"][key] is not None:
                    ignored_parameters.append(key)
                del payload["parameters"][key]
            if len(ignored_parameters) > 0:
                warnings.warn(
                    "API endpoint/model for text-generation is not served via TGI. Ignoring parameters"
                    f" {ignored_parameters}.",
                    UserWarning,
                )
            if details:
                warnings.warn(
                    "API endpoint/model for text-generation is not served via TGI. Parameter `details=True` will"
                    " be ignored meaning only the generated text will be returned.",
                    UserWarning,
                )
                details = False
            if stream:
                raise ValueError(
                    "API endpoint/model for text-generation is not served via TGI. Cannot return output as a stream."
                    " Please pass `stream=False` as input."
                )

        # Handle errors separately for more precise error messages
        try:
            bytes_output = self.post(json=payload, model=model, task="text-generation", stream=stream)  # type: ignore
        except HTTPError as e:
            if isinstance(e, BadRequestError) and "The following `model_kwargs` are not used by the model" in str(e):
                _set_as_non_tgi(model)
                return self.text_generation(  # type: ignore
                    prompt=prompt,
                    details=details,
                    stream=stream,
                    model=model,
                    do_sample=do_sample,
                    max_new_tokens=max_new_tokens,
                    best_of=best_of,
                    repetition_penalty=repetition_penalty,
                    return_full_text=return_full_text,
                    seed=seed,
                    stop_sequences=stop_sequences,
                    temperature=temperature,
                    top_k=top_k,
                    top_p=top_p,
                    truncate=truncate,
                    typical_p=typical_p,
                    watermark=watermark,
                    decoder_input_details=decoder_input_details,
                )
            raise_text_generation_error(e)

        # Parse output
        if stream:
            return _stream_text_generation_response(bytes_output, details)  # type: ignore

        data = _bytes_to_dict(bytes_output)[0]
        return TextGenerationResponse(**data) if details else data["generated_text"]

client = InferenceClientUS(
    API_URL,
    headers={"Authorization": f"Bearer {HF_TOKEN}"},
)

def asynchronous_push(f_stop):
    if not data_repo.is_repo_clean():
    #     print("Repo currently clean. Ignoring push_to_hub")
    #     print(data_repo.huggingface_token)
    # else:
        data_repo.git_add(auto_lfs_track=True)
        data_repo.git_commit("Auto commit by space")
        if FORCE_PUSH == "yes":
            force_git_push(data_repo)
        else:
            data_repo.git_push()
    if not f_stop.is_set():
        # call again in 60 seconds
        threading.Timer(PUSH_FREQUENCY, asynchronous_push, [f_stop]).start()

f_stop = threading.Event()
asynchronous_push(f_stop)

def format_prompt(message, history, system_prompt):
  prompt = "" # ؛
  if system_prompt:
    prompt += f"{system_prompt}"
  for user_prompt, bot_response in history:
    prompt += f"{user_prompt}"
    prompt += f"{bot_response}"
  prompt += f"""{message}"""
  return prompt.replace('\n','؛').replace('\t','/').replace(' * ','/').replace('\u200c',' ').strip()

def generate(
    prompt, history, name, system_prompt, 
    temperature=0.9, max_new_tokens=100, top_p=0.95, top_k=100,
    repetition_penalty=1.0, seed=42,
):
    global PROMPT
    PROMPT = prompt
    global HISTORY
    HISTORY = history
    global NAME
    NAME = name
    global SYSTEM_PROMPT
    SYSTEM_PROMPT = system_prompt
    global TEMPERATURE
    TEMPERATURE = temperature
    global MAX_NEW_TOKENS
    MAX_NEW_TOKENS = max_new_tokens
    global TOP_P
    TOP_P = top_p
    global TOP_K
    TOP_K = top_k
    global REPETITION_PENALTY
    REPETITION_PENALTY = repetition_penalty
    
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)
    generate_kwargs = dict(
        max_new_tokens=max_new_tokens,
        temperature=None if temperature==1 else temperature,
        top_p=None if top_p==0 else top_p,
        repetition_penalty=None if repetition_penalty==1 else repetition_penalty,
        top_k=None if top_k==0 else top_k,
        stop_sequences=stop_sequences,
        do_sample=True,
        #best_of=2,
        #typical_p=0.9,
        #seed=seed,
    )
    #seed = seed + 1
    history = [] # explicitly set the history as none so no history is important anymore
    formatted_prompt = format_prompt(prompt, history, system_prompt)

    print(f"Formatted Prompt: {formatted_prompt}")
    
    if len(ENDPOINT)>0:
        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=True, return_full_text=False)
        stream = [stream] # if stream false
    else:
        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=True, return_full_text=False)

    output = "" #f"{prompt}"
    for response in stream:
        #print('stream',response)

        if len(ENDPOINT)>0:
            if isinstance(response, str):
                output += response if response else ""
            else:
                output += response.generated_text if response.generated_text else ""
        else:        
            output += response

        for stop_str in stop_sequences:
            if output.endswith(stop_str):
                output = output[:-len(stop_str)]
                output = output.rstrip()
                yield output
        yield output

    return output

additional_inputs=[
    gr.Textbox(
            "",
            label="Who are you?",
            placeholder="...Please write your name here",
        ),
    gr.Textbox("<|endoftext|>", label="Optional system prompt"), #<|endoftext|>
    gr.Slider(
        label="Temperature",
        value=1.0,
        minimum=0.0,
        maximum=1.0,
        step=0.01,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=64,
        minimum=0,
        maximum=250,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0,
        minimum=0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Top-k",
        value=0,
        minimum=0,
        maximum=1000,
        step=10,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.0,
        minimum=1.0001,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    ),
    gr.Markdown(
                """
                Model: Sorvãd (سرواد)

                سرواد. [ س رْ ] (اِ) کلام منظوم و شعر. (برهان ) (غیاث ). شعر پارسی . (تفلیسی ) :
                دگر نخواهم گفتن همی ثنا وغزل
                که رفت یکرهه بازار و قیمت سرواد.
                لبیبی (از لغت فرس ص 108).
                
                
                زهی به عدل تو مرهون عمارت دنیا
                خهی به مدح تومشحون رسایل و سرواد.
                شمس فخری .
                
                - Mojtaba Valipour: Model Design and Pretraining, Data Collection
                - Ali Ghodsi: Advising
                - Amir Mohammad Marshal Pirgheybi: Data Processing
                """
            )
]

CSS = """
.gradio-container textarea {direction: rtl; white-space: pre-line;}
#component-11 #component-12 {direction: rtl; white-space: pre-line;}
p {direction: rtl; white-space: pre-line;}
"""

class Chatbot(gr.Chatbot):
    def __init__(
        self,
        value: list[list[str | tuple[str] | tuple[str | Path, str] | None]]
        | Callable
        | None = None,
        color_map: dict[str, str] | None = None,
        *,
        label: str | None = None,
        every: float | None = None,
        show_label: bool | None = None,
        container: bool = True,
        scale: int | None = None,
        min_width: int = 160,
        visible: bool = True,
        elem_id: str | None = None,
        elem_classes: list[str] | str | None = None,
        height: int | None = None,
        latex_delimiters: list[dict[str, str | bool]] | None = None,
        rtl: bool = False,
        show_share_button: bool | None = None,
        show_copy_button: bool = False,
        avatar_images: tuple[str | Path | None, str | Path | None] | None = None,
        sanitize_html: bool = True,
        render_markdown: bool = True,
        bubble_full_width: bool = True,
        line_breaks: bool = True,
        layout: Literal["panel", "bubble"] | None = None,
        **kwargs,
    ):
        """
        Parameters:
            value: Default value to show in chatbot. If callable, the function will be called whenever the app loads to set the initial value of the component.
            color_map: This parameter is deprecated.
            label: component name in interface.
            every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute.
            show_label: if True, will display label.
            container: If True, will place the component in a container - providing some extra padding around the border.
            scale: relative width compared to adjacent Components in a Row. For example, if Component A has scale=2, and Component B has scale=1, A will be twice as wide as B. Should be an integer.
            min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
            visible: If False, component will be hidden.
            elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
            elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
            height: height of the component in pixels.
            latex_delimiters: A list of dicts of the form {"left": open delimiter (str), "right": close delimiter (str), "display": whether to display in newline (bool)} that will be used to render LaTeX expressions. If not provided, `latex_delimiters` is set to `[{ "left": "$$", "right": "$$", "display": True }]`, so only expressions enclosed in $$ delimiters will be rendered as LaTeX, and in a new line. Pass in an empty list to disable LaTeX rendering. For more information, see the [KaTeX documentation](https://katex.org/docs/autorender.html).
            rtl: If True, sets the direction of the rendered text to right-to-left. Default is False, which renders text left-to-right.
            show_share_button: If True, will show a share icon in the corner of the component that allows user to share outputs to Hugging Face Spaces Discussions. If False, icon does not appear. If set to None (default behavior), then the icon appears if this Gradio app is launched on Spaces, but not otherwise.
            show_copy_button: If True, will show a copy button for each chatbot message.
            avatar_images: Tuple of two avatar image paths or URLs for user and bot (in that order). Pass None for either the user or bot image to skip. Must be within the working directory of the Gradio app or an external URL.
            sanitize_html: If False, will disable HTML sanitization for chatbot messages. This is not recommended, as it can lead to security vulnerabilities.
            render_markdown: If False, will disable Markdown rendering for chatbot messages.
            bubble_full_width: If False, the chat bubble will fit to the content of the message. If True (default), the chat bubble will be the full width of the component.
            line_breaks: If True (default), will enable Github-flavored Markdown line breaks in chatbot messages. If False, single new lines will be ignored. Only applies if `render_markdown` is True.
            layout: If "panel", will display the chatbot in a llm style layout. If "bubble", will display the chatbot with message bubbles, with the user and bot messages on alterating sides. Will default to "bubble".
        """
        super().__init__(
            value = value,
            color_map = color_map,
            label = label,
            every = every,
            show_label = show_label,
            container = container,
            scale = scale,
            min_width = min_width,
            visible = visible,
            elem_id = elem_id,
            elem_classes = elem_classes,
            height = height,
            latex_delimiters = latex_delimiters,
            rtl = rtl,
            show_share_button = show_share_button,
            show_copy_button = show_copy_button,
            avatar_images = avatar_images,
            sanitize_html = sanitize_html,
            render_markdown = render_markdown,
            bubble_full_width = bubble_full_width,
            line_breaks = line_breaks,
            layout = layout,
            kwargs=kwargs,
        )
        
    def _preprocess_chat_messages(
        self, chat_message: str | dict | None
    ) -> str | tuple[str] | tuple[str, str] | None:
        if chat_message is None:
            return None
        elif isinstance(chat_message, dict):
            if chat_message["alt_text"] is not None:
                return (chat_message["name"], chat_message["alt_text"])
            else:
                return (chat_message["name"],)
        else:  # string
            return chat_message
            
    def preprocess(
        self,
        y: list[list[str | dict | None] | tuple[str | dict | None, str | dict | None]],
    ) -> list[list[str | tuple[str] | tuple[str, str] | None]]:
        if y is None:
            return y
        processed_messages = []
        for message_pair in y:
            if not isinstance(message_pair, (tuple, list)):
                raise TypeError(
                    f"Expected a list of lists or list of tuples. Received: {message_pair}"
                )
            if len(message_pair) != 2:
                raise TypeError(
                    f"Expected a list of lists of length 2 or list of tuples of length 2. Received: {message_pair}"
                )
            processed_messages.append(
                [
                    self._preprocess_chat_messages(message_pair[0]),
                    self._preprocess_chat_messages(message_pair[1]),
                ]
            )
        return processed_messages

    def _postprocess_chat_messages(
        self, chat_message: str | tuple | list | None
    ) -> str | dict | None:
        if chat_message is None:
            return None
        elif isinstance(chat_message, (tuple, list)):
            file_uri = str(chat_message[0])
            if utils.validate_url(file_uri):
                filepath = file_uri
            else:
                filepath = self.make_temp_copy_if_needed(file_uri)

            mime_type = client_utils.get_mimetype(filepath)
            return {
                "name": filepath,
                "mime_type": mime_type,
                "alt_text": chat_message[1] if len(chat_message) > 1 else None,
                "data": None,  # These last two fields are filled in by the frontend
                "is_file": True,
            }
        elif isinstance(chat_message, str):
            chat_message = inspect.cleandoc(chat_message)
            return chat_message
        else:
            raise ValueError(f"Invalid message for Chatbot component: {chat_message}")

    def postprocess(
        self,
        y: list[list[str | tuple[str] | tuple[str, str] | None] | tuple],
    ) -> list[list[str | dict | None]]:
        """
        Parameters:
            y: List of lists representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.  It can also be a tuple whose first element is a string or pathlib.Path filepath or URL to an image/video/audio, and second (optional) element is the alt text, in which case the media file is displayed. It can also be None, in which case that message is not displayed.
        Returns:
            List of lists representing the message and response. Each message and response will be a string of HTML, or a dictionary with media information. Or None if the message is not to be displayed.
        """
        if y is None:
            return []
        processed_messages = []
        for message_pair in y:
            result = ""

            if message_pair[0] is not None:
                result += message_pair[0]
            if message_pair[1] is not None:
                result += message_pair[1]
            if not isinstance(message_pair, (tuple, list)):
                raise TypeError(
                    f"Expected a list of lists or list of tuples. Received: {message_pair}"
                )
            if len(message_pair) != 2:
                raise TypeError(
                    f"Expected a list of lists of length 2 or list of tuples of length 2. Received: {message_pair}"
                )
            result = result.replace('؛','\n').replace('/',' * ').replace('\u200c',' ').strip()
            result = result[:result.rfind('\n')] # filter till the end verse, do not publish not complete verses

            #print('Message Pairs: ',message_pair[0],message_pair[1], result)
            
            processed_messages.append(
                [
                    None,self._postprocess_chat_messages(result)
                    #self._postprocess_chat_messages(message_pair[1])),
                ]
            )
        return processed_messages

chatbot = Chatbot(label="PersianGPT",
                     rtl=True,
                     show_share_button=True,
                     show_copy_button=True,
                     #layout="panel",
                     bubble_full_width = False)

textbox = gr.Textbox(
            label="textbox",
            container=False,
            show_label=False,
            lines=3,
            scale=7,
            placeholder="...Type something here",
            rtl=True,
        )



class ChatInterface(gr.ChatInterface):
    def __init__(
        self,
        fn: Callable,
        *,
        chatbot: Chatbot | None = None,
        textbox: Textbox | None = None,
        additional_inputs = None,
        additional_inputs_accordion_name: str = "Additional Inputs",
        examples: list[str] | None = None,
        cache_examples: bool | None = None,
        title: str | None = None,
        description: str | None = None,
        theme: Theme | str | None = None,
        css: str | None = None,
        analytics_enabled: bool | None = None,
        submit_btn: str | None | Button = "Submit",
        stop_btn: str | None | Button = "Stop",
        retry_btn: str | None | Button = "🔄  Retry",
        undo_btn: str | None | Button = "↩️ Undo",
        clear_btn: str | None | Button = "🗑️  Clear",
        autofocus: bool = True,
    ):
        """
        Parameters:
            fn: the function to wrap the chat interface around. Should accept two parameters: a string input message and list of two-element lists of the form [[user_message, bot_message], ...] representing the chat history, and return a string response. See the Chatbot documentation for more information on the chat history format.
            chatbot: an instance of the gr.Chatbot component to use for the chat interface, if you would like to customize the chatbot properties. If not provided, a default gr.Chatbot component will be created.
            textbox: an instance of the gr.Textbox component to use for the chat interface, if you would like to customize the textbox properties. If not provided, a default gr.Textbox component will be created.
            additional_inputs: an instance or list of instances of gradio components (or their string shortcuts) to use as additional inputs to the chatbot. If components are not already rendered in a surrounding Blocks, then the components will be displayed under the chatbot, in an accordion.
            additional_inputs_accordion_name: the label of the accordion to use for additional inputs, only used if additional_inputs is provided.
            examples: sample inputs for the function; if provided, appear below the chatbot and can be clicked to populate the chatbot input.
            cache_examples: If True, caches examples in the server for fast runtime in examples. The default option in HuggingFace Spaces is True. The default option elsewhere is False.
            title: a title for the interface; if provided, appears above chatbot in large font. Also used as the tab title when opened in a browser window.
            description: a description for the interface; if provided, appears above the chatbot and beneath the title in regular font. Accepts Markdown and HTML content.
            theme: Theme to use, loaded from gradio.themes.
            css: custom css or path to custom css file to use with interface.
            analytics_enabled: Whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable if defined, or default to True.
            submit_btn: Text to display on the submit button. If None, no button will be displayed. If a Button object, that button will be used.
            stop_btn: Text to display on the stop button, which replaces the submit_btn when the submit_btn or retry_btn is clicked and response is streaming. Clicking on the stop_btn will halt the chatbot response. If set to None, stop button functionality does not appear in the chatbot. If a Button object, that button will be used as the stop button.
            retry_btn: Text to display on the retry button. If None, no button will be displayed. If a Button object, that button will be used.
            undo_btn: Text to display on the delete last button. If None, no button will be displayed. If a Button object, that button will be used.
            clear_btn: Text to display on the clear button. If None, no button will be displayed. If a Button object, that button will be used.
            autofocus: If True, autofocuses to the textbox when the page loads.
        """
        super().__init__(
            fn = fn,
            chatbot = chatbot,
            textbox= textbox,
            additional_inputs = additional_inputs,
            additional_inputs_accordion_name = additional_inputs_accordion_name,
            examples = examples,
            cache_examples = cache_examples,
            title = title,
            description = description,
            theme = theme,
            css = css,
            analytics_enabled = analytics_enabled,
            submit_btn = submit_btn,
            stop_btn = stop_btn,
            retry_btn = retry_btn,
            undo_btn = undo_btn,
            clear_btn = clear_btn,
            autofocus = autofocus,
        )

    async def _stream_fn(
        self,
        message: str,
        history_with_input: list[list[str | None]],
        request: Request,
        *args,
    ) -> AsyncGenerator:
        history = history_with_input[:-1]

        print(f'Message is {message}')
        if len(message)==0:
            message = random.choice(["ا","ب","پ","ت","ث","ج","چ","ح","خ","ل","م","ن","و",
                                    "د","ذ","ر","ز","ژ","س","ش","ص","ض","ط","ظ","ع","غ",
                                    "ف","ق","ه","ی",
                                   ])
        
        inputs, _, _ = special_args(
            self.fn, inputs=[message, history, *args], request=request
        )

        if self.is_async:
            generator = self.fn(*inputs)
        else:
            generator = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )
            generator = SyncToAsyncIterator(generator, self.limiter)
        try:
            first_response = await async_iteration(generator)
            update = history + [[message, first_response]]
            yield update, update
        except StopIteration:
            update = history + [[message, None]]
            yield update, update
        async for response in generator:
            update = history + [[message, response]]
            yield update, update
        
    async def _submit_fn(
        self,
        message: str,
        history_with_input: list[list[str | None]],
        request: Request,
        *args,
    ) -> tuple[list[list[str | None]], list[list[str | None]]]:
        history = history_with_input[:-1]
        
        inputs, _, _ = special_args(
            self.fn, inputs=[message, history, *args], request=request
        )

        if self.is_async:
            response = await self.fn(*inputs)
        else:
            response = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )

        history.append([message,response])

        return history, history

chat_interface = ChatInterface(
        generate, 
        chatbot=chatbot,
        textbox=textbox,
        #examples=examples,
        additional_inputs=additional_inputs,
        submit_btn = "Generate",
        stop_btn = None,
        retry_btn = None,
        undo_btn = None,
        clear_btn = None,
        cache_examples=False,
    ) 

def vote(data: gr.LikeData):
    if data.liked:
        print("You upvoted this response: " + data.value)
    else:
        print("You downvoted this response: " + data.value)

    with open(DATA_FILE, "a") as jsonlfile:
        json_data = [
            json.dumps(
                    {
                        "time_stamp": time.time(),
                        "model_version":MODEL_VERSION,
                        "name":NAME,
                        "prompt": PROMPT.replace('\n','؛').replace('\t','/').replace(' * ','/').replace('\u200c',' ').strip(),
                        "system prompt": SYSTEM_PROMPT,
                        "temperature": TEMPERATURE,
                        "max_new_tokens": MAX_NEW_TOKENS,
                        "top_p": TOP_P,
                        "top_k": TOP_K,
                        "repetition_penalty": REPETITION_PENALTY,
                        "response": data.value.replace('\n','؛').replace('\t','/').replace(' * ','/').replace('\u200c',' ').strip(),
                        "label": data.liked,
                    }, ensure_ascii=False
            )
        ]
        print(f'we are writing this: {json_data}')
        jsonlfile.write("\n".join(json_data) + "\n")

    
with gr.Blocks(css=CSS) as demo:
    chatbot.like(vote, None, None)
    chat_interface.render()

demo.queue(concurrency_count=100, api_open=False).launch(show_api=False) #, share=True)