import subprocess subprocess.run( 'pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True ) import os import time import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer import gradio as gr from threading import Thread HF_TOKEN = os.environ.get("HF_TOKEN", None) MODEL = "Daemontatox/AetherDrake" TITLE = "

Sphinx Reasoner

" PLACEHOLDER = """

Ask me Anything !!

""" CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } h3 { text-align: center; } .message-wrap { overflow-x: auto; } .message-wrap p { margin-bottom: 1em; } .message-wrap pre { background-color: #f6f8fa; border-radius: 3px; padding: 16px; overflow-x: auto; } .message-wrap code { background-color: rgba(175,184,193,0.2); border-radius: 3px; padding: 0.2em 0.4em; font-family: monospace; } """ device = "cuda" # for GPU usage or "cpu" for CPU usage quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type= "nf4") tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModelForCausalLM.from_pretrained( MODEL, torch_dtype=torch.float16, device_map="auto", attn_implementation="flash_attention_2", quantization_config=quantization_config) # Ensure `pad_token_id` is set if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id @spaces.GPU() def stream_chat( message: str, history: list, system_prompt: str, temperature: float = 1.0, max_new_tokens: int = 8192, top_p: float = 1.0, top_k: int = 20, penalty: float = 1.2, ): print(f'message: {message}') print(f'history: {history}') conversation = [ {"role": "system", "content": system_prompt} ] for prompt, answer in history: conversation.extend([ {"role": "user", "content": prompt}, {"role": "assistant", "content": answer}, ]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, max_new_tokens = max_new_tokens, do_sample = False if temperature == 0 else True, top_p = top_p, top_k = top_k, eos_token_id = tokenizer.eos_token_id, pad_token_id = tokenizer.pad_token_id, temperature = temperature, repetition_penalty=penalty, streamer=streamer, ) with torch.no_grad(): thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text yield buffer chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) with gr.Blocks(css=CSS, theme="soft") as demo: gr.HTML(TITLE) gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") gr.ChatInterface( fn=stream_chat, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Textbox( value="""You are an AI expert at providing high-quality answers. Your process involves these steps: 1. Initial Thought: Use the tag to reason step-by-step and generate your best possible response to the following request: [User's Request Here]. Example: Step 1: Understand the request. Step 2: Analyze potential solutions. Step 3: Choose the optimal response. 2. Self-Critique: Critically evaluate your initial response within tags, focusing on: Accuracy: Is it factually correct and verifiable? Clarity: Is it easy to understand and free of ambiguity? Completeness: Does it fully address the user's request? Improvement: What specific aspects could be better? Example: Accuracy: Verified. Clarity: Needs simplification. Completeness: Add examples. 3. Revision: Based on your critique, use tags to refine and improve your response. Example: Adjusting for clarity and adding an example to improve understanding. 4. Final Response: Present your revised answer clearly within tags. Example: This is the improved response. 5. Tag Innovation: If necessary, create and define new tags to better structure your reasoning or enhance clarity. Use them consistently. Example: This tag defines a new term introduced in the response. Ensure every part of your thought process and output is properly enclosed in appropriate tags for clarity and organization. """, label="System Prompt", lines=5, render=False, ), gr.Slider( minimum=0, maximum=1, step=0.1, value=0.5, label="Temperature", render=False, ), gr.Slider( minimum=128, maximum=32000, step=1, value= 8192, label="Max new tokens", render=False, ), gr.Slider( minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False, ), gr.Slider( minimum=1, maximum=20, step=1, value=20, label="top_k", render=False, ), gr.Slider( minimum=0.0, maximum=2.0, step=0.1, value=1.2, label="Repetition penalty", render=False, ), ], examples=[ ["What is meant by a Singularity? "], ["Explain the theory of Relativty"], ["Explain your thought process"], ["Explain how mamba2 structure LLMs work and how do they differ from transformers? "], ], cache_examples=False, ) if __name__ == "__main__": demo.launch()