import torch from PIL import Image import gradio as gr import spaces from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteriaList, StoppingCriteria import os from threading import Thread HF_TOKEN = os.environ.get("HF_TOKEN", None) MODEL_LIST = "THUDM/LongWriter-glm4-9b" #MODELS = os.environ.get("MODELS") #MODEL_NAME = MODELS.split("/")[-1] TITLE = "

GLM SPACE

" PLACEHOLDER = f'

LongWriter-glm4-9b is trained based on glm-4-9b, and is capable of generating 10,000+ words at once.

' CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } """ model = AutoModelForCausalLM.from_pretrained( "THUDM/LongWriter-glm4-9b", torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True, ).eval() tokenizer = AutoTokenizer.from_pretrained("THUDM/LongWriter-glm4-9b",trust_remote_code=True) class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: # stop_ids = model.config.eos_token_id stop_ids = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), tokenizer.get_command("<|observation|>")] for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False @spaces.GPU() def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int): print(f'message is - {message}') print(f'history is - {history}') conversation = [] for prompt, answer in history: conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}]) #conversation.append({"role": "user", "content": message}) print(f"Conversation is -\n{conversation}") input_ids = tokenizer.build_chat_input(message, history=conversation, role='user').input_ids.to(model.device) #input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), tokenizer.get_command("<|observation|>")] generate_kwargs = dict( input_ids=input_ids, max_new_tokens=max_new_tokens, streamer=streamer, do_sample=True, top_k=1, temperature=temperature, repetition_penalty=1, stopping_criteria=StoppingCriteriaList([stop]), eos_token_id=eos_token_id, ) #gen_kwargs = {**input_ids, **generate_kwargs} thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text yield buffer chatbot = gr.Chatbot(height=600, placeholder = PLACEHOLDER) with gr.Blocks(css=CSS) as demo: gr.HTML(TITLE) gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") gr.ChatInterface( fn=stream_chat, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Slider( minimum=0, maximum=1, step=0.1, value=0.5, label="Temperature", render=False, ), gr.Slider( minimum=1024, maximum=32768, step=1, value=4096, label="Max New Tokens", render=False, ), ], examples=[ ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."], ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."], ["Tell me a random fun fact about the Roman Empire."], ["Show me a code snippet of a website's sticky header in CSS and JavaScript."], ], cache_examples=False, ) if __name__ == "__main__": demo.launch()