import subprocess subprocess.run( 'pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True ) import os import re import time import torch import spaces import gradio as gr from threading import Thread from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer ) # Configuration Constants MODEL_ID = "Daemontatox/AetherSett" DEFAULT_SYSTEM_PROMPT = """You are a Sentient Reasoning AI , You Provide quality and Accurate Answers to the user.""" # UI Configuration TITLE = "

AI Reasoning Assistant

" PLACEHOLDER = "Ask me anything! I'll think through it step by step." CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } h3 { text-align: center; } .message-wrap { overflow-x: auto; } .message-wrap p { margin-bottom: 1em; } .message-wrap pre { background-color: #f6f8fa; border-radius: 3px; padding: 16px; overflow-x: auto; } .message-wrap code { background-color: rgba(175,184,193,0.2); border-radius: 3px; padding: 0.2em 0.4em; font-family: monospace; } .custom-tag { color: #0066cc; font-weight: bold; } .chat-area { height: 500px !important; overflow-y: auto !important; } """ def initialize_model(): """Initialize the model with appropriate configurations""" quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id model = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype=torch.float16, device_map="auto", attn_implementation="flash_attention_2", # quantization_config=quantization_config ) return model, tokenizer def format_text(text): """Format text with proper spacing and tag highlighting (but keep tags visible)""" tag_patterns = [ (r'', '\n\n'), (r'', '\n\n'), (r'', '\n\n'), (r'', '\n\n'), (r'', '\n\n'), (r'', '\n\n'), (r'', '\n\n'), (r'', '\n\n') ] formatted = text for pattern, replacement in tag_patterns: formatted = re.sub(pattern, replacement, formatted) formatted = '\n'.join(line for line in formatted.split('\n') if line.strip()) return formatted def format_chat_history(history): """Format chat history for display, keeping tags visible""" formatted = [] for user_msg, assistant_msg in history: formatted.append(f"User: {user_msg}") if assistant_msg: formatted.append(f"Assistant: {assistant_msg}") return "\n\n".join(formatted) def create_examples(): """Create example queries for the UI""" return [ "Explain the concept of artificial intelligence.", "How does photosynthesis work?", "What are the main causes of climate change?", "Describe the process of protein synthesis.", "What are the key features of a democratic government?", "Explain the theory of relativity.", "How do vaccines work to prevent diseases?", "What are the major events of World War II?", "Describe the structure of a human cell.", "What is the role of DNA in genetics?" ] @spaces.GPU() def chat_response( message: str, history: list, chat_display: str, system_prompt: str, temperature: float = 0.2, max_new_tokens: int = 4000, top_p: float = 0.8, top_k: int = 40, penalty: float = 1.2, ): """Generate chat responses, keeping tags visible in the output""" conversation = [ {"role": "system", "content": system_prompt} ] for prompt, answer in history: conversation.extend([ {"role": "user", "content": prompt}, {"role": "assistant", "content": answer} ]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template( conversation, add_generation_prompt=True, return_tensors="pt" ).to(model.device) streamer = TextIteratorStreamer( tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True ) generate_kwargs = dict( input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=False if temperature == 0 else True, top_p=top_p, top_k=top_k, temperature=temperature, repetition_penalty=penalty, streamer=streamer, ) buffer = "" with torch.no_grad(): thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() history = history + [[message, ""]] for new_text in streamer: buffer += new_text formatted_buffer = format_text(buffer) history[-1][1] = formatted_buffer chat_display = format_chat_history(history) yield history, chat_display def process_example(example: str) -> tuple: """Process example query and return empty history and updated display""" return [], f"User: {example}\n\n" def main(): """Main function to set up and launch the Gradio interface""" global model, tokenizer model, tokenizer = initialize_model() with gr.Blocks(css=CSS, theme="soft") as demo: gr.HTML(TITLE) gr.DuplicateButton( value="Duplicate Space for private use", elem_classes="duplicate-button" ) with gr.Row(): with gr.Column(): chat_history = gr.State([]) chat_display = gr.TextArea( value="", label="Chat History", interactive=False, elem_classes=["chat-area"], ) message = gr.TextArea( placeholder=PLACEHOLDER, label="Your message", lines=3 ) with gr.Row(): submit = gr.Button("Send") clear = gr.Button("Clear") with gr.Accordion("⚙️ Advanced Settings", open=False): system_prompt = gr.TextArea( value=DEFAULT_SYSTEM_PROMPT, label="System Prompt", lines=5, ) temperature = gr.Slider( minimum=0, maximum=1, step=0.1, value=0.2, label="Temperature", ) max_tokens = gr.Slider( minimum=128, maximum=32000, step=128, value=4000, label="Max Tokens", ) top_p = gr.Slider( minimum=0.1, maximum=1.0, step=0.1, value=0.8, label="Top-p", ) top_k = gr.Slider( minimum=1, maximum=100, step=1, value=40, label="Top-k", ) penalty = gr.Slider( minimum=1.0, maximum=2.0, step=0.1, value=1.2, label="Repetition Penalty", ) examples = gr.Examples( examples=create_examples(), inputs=[message], outputs=[chat_history, chat_display], fn=process_example, cache_examples=False, ) # Set up event handlers submit_click = submit.click( chat_response, inputs=[ message, chat_history, chat_display, system_prompt, temperature, max_tokens, top_p, top_k, penalty, ], outputs=[chat_history, chat_display], show_progress=True, ) message.submit( chat_response, inputs=[ message, chat_history, chat_display, system_prompt, temperature, max_tokens, top_p, top_k, penalty, ], outputs=[chat_history, chat_display], show_progress=True, ) clear.click( lambda: ([], ""), outputs=[chat_history, chat_display], show_progress=True, ) submit_click.then(lambda: "", outputs=message) message.submit(lambda: "", outputs=message) return demo if __name__ == "__main__": demo = main() demo.launch()